

About This eBook

ePUB is an open, industry-standard format for eBooks. However,
support of ePUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation
to your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you
can click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text
format, we have included images of the code that mimic the presentation
found in the print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a “Click here
to view code image” link. Click the link to view the print-fidelity code
image. To return to the previous page viewed, click the Back button on
your device or app.

Praise for
Code That Fits in Your Head

“We progress in software by standing on the shoulders of those who came
before us. Mark’s vast experience ranges from philosophical and
organisational considerations right down to the precise details of writing
code. In this book, you’re offered an opportunity to build on that
experience. Use it.”

—Adam Ralph, speaker, tutor, and
software simplifier, Particular

Software

“I’ve been reading Mark’s blogs for years and he always manages to
entertain while at the same time offering deep technical insights. Code That
Fits in Your Head follows in that vein, offering a wealth of information to
any software developer looking to take their skills to the next level.”

—Adam Tornhill, founder of
CodeScene, author of Software

Design X-Rays and Your Code as a
Crime Scene

“My favorite thing about this book is how it uses a single code base as a
working example. Rather than having to download separate code samples,
you get a single Git repository with the entire application. Its history is
hand-crafted to show the evolution of the code alongside the concepts being
explained in the book. As you read about a particular principle or technique,
you’ll find a direct reference to the commit that demonstrates it in practice.
Of course, you’re also free to navigate the history at your own leisure,

stopping at any stage to inspect, debug, or even experiment with the code.
I’ve never seen this level of interactivity in a book before, and it brings me
special joy because it takes advantage of Git’s unique design in a new
constructive way.”

—Enrico Campidoglio, independent
consultant, speaker and Pluralsight

author

“Mark Seemann not only has decades of experience architecting and
building large software systems, but is also one of the foremost thinkers on
how to scale and manage the complex relationship between such systems
and the teams that build them.”

—Mike Hadlow, freelance software
consultant and blogger

“Mark Seemann is well known for explaining complex concepts clearly and
thoroughly. In this book he condenses his wide-ranging software
development experience into a set of practical, pragmatic techniques for
writing sustainable and human-friendly code. This book will be a must read
for every programmer.”

—Scott Wlaschin, author of Domain
Modeling Made Functional

“Mark writes, ‘Successful software endures’—this book will help you to
write that kind of software.”

—Bryan Hogan, software architect,
podcaster, blogger

“Mark has an extraordinary ability to help others think deeply about the
industry and profession of software development. With every interview on

.NET Rocks! I have come away knowing I would have to go back and listen
to my own show to really take in everything we discussed.”

—Richard Campbell, co-host, .NET
Rocks!

Code That Fits in Your Head

Code That Fits in Your Head
Heuristics for Software Engineering

Mark Seemann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape
Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal •
Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover: Mark Seeman
Page xxix, author photo: © Linea Vega Seemann Jacobsen
Page 12, Queen Alexandrine’s Bridge, Denmark: Ulla Seemann
Page 33, baseball and bat: buriy/123RF
Page 38, illustration of human brain: maglyvi/Shutterstock
Page 38, illustration of laptop computer: grmarc/Shutterstock
Page 157, Figure 8.2: © Microsoft 2021
Page 158, Figure 8.3, scissors: Hurst Photo/Shutterstock
Page 158, Figure 8.3, hand saw: Andrei Kuzmik/Shutterstock
Page 158, Figure 8.3, utility knife: Yogamreet/Shutterstock
Page 158, Figure 8.3, Phillips-head screwdriver: bozmp/Shutterstock
Page 158, Figure 8.3, Swiss military knife: Billion Photos/Shutterstock
Page 159, Figure 8.4: Roman Babakin/Shutterstock
Page 170, Figure 8.5: © Microsoft 2021
Page 239, Figure 12.1: ajt/Shutterstock
Page 259, Figure 13.2, bursting star: Arcady/Shutterstock
Page 269, Figure 13.5: Verdandi/123RF
Page 277, Figure 14.1: Tatyana Pronina/Shutterstock
Page 291, Figure 15.2: kornilov007/Shutterstock
Page 291, hammer: bozmp/Shutterstock
Pages 306, Figure 15.3: Figure based on a screen shot from codescene.io
Pages 307, Figure 15.4: Figure based on a screen shot from codescene.io

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

Library of Congress Control Number: 2021944424

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-746440-1
ISBN-10: 0-13-746440-1

ScoutAutomatedPrintCode

http://www.pearson.com/permissions

To my parents:
My mother, Ulla Seemann, to whom I owe my attention to detail.

My father, Leif Seemann, from whom I inherited my contrarian streak.

“The future is already here — it’s just not very evenly distributed”

—William Gibson

Contents

Series Editor Foreword
Preface
About the Author

PART I Acceleration

Chapter 1 Art or Science?
1.1 Building a House

1.1.1 The Problem with Projects
1.1.2 The Problem with Phases
1.1.3 Dependencies

1.2 Growing a Garden
1.2.1 What Makes a Garden Grow?

1.3 Towards Engineering
1.3.1 Software as a Craft
1.3.2 Heuristics
1.3.3 Earlier Notions of Software Engineering
1.3.4 Moving Forward with Software Engineering

1.4 Conclusion

Chapter 2 Checklists
2.1 An Aid to Memory
2.2 Checklist for a New Code Base

2.2.1 Use Git
2.2.2 Automate the Build

2.2.3 Turn On all Error Messages
2.3 Adding Checks to Existing Code Bases

2.3.1 Gradual Improvement
2.3.2 Hack Your Organisation

2.4 Conclusion

Chapter 3 Tackling Complexity
3.1 Purpose

3.1.1 Sustainability
3.1.2 Value

3.2 Why Programming Is Difficult
3.2.1 The Brain Metaphor
3.2.2 Code Is Read More Than It’s Written
3.2.3 Readability
3.2.4 Intellectual Work

3.3 Towards Software Engineering
3.3.1 Relationship to Computer Science
3.3.2 Humane Code

3.4 Conclusion

Chapter 4 Vertical Slice
4.1 Start with Working Software

4.1.1 From Data Ingress to Data Persistence
4.1.2 Minimal Vertical Slice

4.2 Walking Skeleton
4.2.1 Characterisation Test
4.2.2 Arrange Act Assert
4.2.3 Moderation of Static Analysis

4.3 Outside-in
4.3.1 Receive JSON
4.3.2 Post a Reservation

4.3.3 Unit Test
4.3.4 DTO and Domain Model
4.3.5 Fake Object
4.3.6 Repository Interface
4.3.7 Create in Repository
4.3.8 Configure Dependencies

4.4 Complete the Slice
4.4.1 Schema
4.4.2 SQL Repository
4.4.3 Configuration with Database
4.4.4 Perform a Smoke Test
4.4.5 Boundary Test with Fake Database

4.5 Conclusion

Chapter 5 Encapsulation
5.1 Save the Data

5.1.1 The Transformation Priority Premise
5.1.2 Parametrised Test
5.1.3 Copy DTO to Domain Model

5.2 Validation
5.2.1 Bad Dates
5.2.2 Red Green Refactor
5.2.3 Natural Numbers
5.2.4 Postel’s Law

5.3 Protection of Invariants
5.3.1 Always Valid

5.4 Conclusion

Chapter 6 Triangulation
6.1 Short-Term versus Long-Term Memory

6.1.1 Legacy Code and Memory

6.2 Capacity
6.2.1 Overbooking
6.2.2 The Devil’s Advocate
6.2.3 Existing Reservations
6.2.4 Devil’s Advocate versus Red Green Refactor
6.2.5 When Do You Have Enough Tests?

6.3 Conclusion

Chapter 7 Decomposition
7.1 Code Rot

7.1.1 Thresholds
7.1.2 Cyclomatic Complexity
7.1.3 The 80/24 Rule

7.2 Code That Fits in Your Brain
7.2.1 Hex Flower
7.2.2 Cohesion
7.2.3 Feature Envy
7.2.4 Lost in Translation
7.2.5 Parse, Don’t Validate
7.2.6 Fractal Architecture
7.2.7 Count the Variables

7.3 Conclusion

Chapter 8 API Design
8.1 Principles of API Design

8.1.1 Affordance
8.1.2 Poka-Yoke
8.1.3 Write for Readers
8.1.4 Favour Well-Named Code over Comments
8.1.5 X Out Names
8.1.6 Command Query Separation

8.1.7 Hierarchy of Communication
8.2 API Design Example

8.2.1 Maître D’
8.2.2 Interacting with an Encapsulated Object
8.2.3 Implementation Details

8.3 Conclusion

Chapter 9 Teamwork
9.1 Git

9.1.1 Commit Messages
9.1.2 Continuous Integration
9.1.3 Small Commits

9.2 Collective Code Ownership
9.2.1 Pair Programming
9.2.2 Mob Programming
9.2.3 Code Review Latency
9.2.4 Rejecting a Change Set
9.2.5 Code Reviews
9.2.6 Pull Requests

9.3 Conclusion

PART II Sustainability 201

Chapter 10 Augmenting Code
10.1 Feature Flags

10.1.1 Calendar Flag
10.2 The Strangler Pattern

10.2.1 Method-Level Strangler
10.2.2 Class-Level Strangler

10.3 Versioning

10.3.1 Advance Warning
10.4 Conclusion

Chapter 11 Editing Unit Tests
11.1 Refactoring Unit Tests

11.1.1 Changing the Safety Net
11.1.2 Adding New Test Code
11.1.3 Separate Refactoring of Test and Production Code

11.2 See Tests Fail
11.3 Conclusion

Chapter 12 Troubleshooting
12.1 Understanding

12.1.1 Scientific Method
12.1.2 Simplify
12.1.3 Rubber Ducking

12.2 Defects
12.2.1 Reproduce Defects as Tests
12.2.2 Slow Tests
12.2.3 Non-deterministic Defects

12.3 Bisection
12.3.1 Bisection with Git

12.4 Conclusion

Chapter 13 Separation of Concerns
13.1 Composition

13.1.1 Nested Composition
13.1.2 Sequential Composition
13.1.3 Referential Transparency

13.2 Cross-Cutting Concerns
13.2.1 Logging

13.2.2 Decorator
13.2.3 What to Log

13.3 Conclusion

Chapter 14 Rhythm
14.1 Personal Rhythm

14.1.1 Time-Boxing
14.1.2 Take Breaks
14.1.3 Use Time Deliberately
14.1.4 Touch Type

14.2 Team Rhythm
14.2.1 Regularly Update Dependencies
14.2.2 Schedule Other Things
14.2.3 Conway’s Law

14.3 Conclusion

Chapter 15 The Usual Suspects
15.1 Performance

15.1.1 Legacy
15.1.2 Legibility

15.2 Security
15.2.1 STRIDE
15.2.2 Spoofing
15.2.3 Tampering
15.2.4 Repudiation
15.2.5 Information Disclosure
15.2.6 Denial of Service
15.2.7 Elevation of Privilege

15.3 Other Techniques
15.3.1 Property-Based Testing
15.3.2 Behavioural Code Analysis

15.4 Conclusion

Chapter 16 Tour
16.1 Navigation

16.1.1 Seeing the Big Picture
16.1.2 File Organisation
16.1.3 Finding Details

16.2 Architecture
16.2.1 Monolith
16.2.2 Cycles

16.3 Usage
16.3.1 Learning from Tests
16.3.2 Listen to Your Tests

16.4 Conclusion

Appendix A List of Practices
A.1 The 50/72 Rule
A.2 The 80/24 Rule
A.3 Arrange Act Assert
A.4 Bisection
A.5 Checklist for A New Code Base
A.6 Command Query Separation331
A.7 Count the Variables
A.8 Cyclomatic Complexity
A.9 Decorators for Cross-Cutting Concerns
A.10 Devil’s Advocate
A.11 Feature Flag
A.12 Functional Core, Imperative Shell
A.13 Hierarchy of Communication
A.14 Justify Exceptions from the Rule
A.15 Parse, Don’t Validate

A.16 Postel’s Law
A.17 Red Green Refactor
A.18 Regularly Update Dependencies
A.19 Reproduce Defects as Tests
A.20 Review Code
A.21 Semantic Versioning
A.22 Separate Refactoring of Test and Production Code
A.23 Slice
A.24 Strangler
A.25 Threat-Model
A.26 Transformation Priority Premise
A.27 X-driven Development
A.28 X Out Names

Bibliography

Index

Series Editor Foreword

My grandson is learning to code.

Yes, you read that right. My 18-year-old grandson is learning to program
computers. Who’s teaching him? His aunt, my youngest daughter, who was
born in 1986, and who 16 months ago decided to change careers from
chemical engineering to programming. And who do they both work for?
My eldest son, who along with my youngest son, is in the process of
starting up his second software consultancy.

Yeah, software runs in the family. And, yeah, I’ve been programming for a
long, long time.

Anyway, my daughter asked me to spend an hour with my grandson
teaching him about the basics and the beginnings of computer
programming. So we started up a Tuple session and I lectured him on what
computers were, and how they got started, and what early computers looked
like, and . . . well, you know.

By the end of the lecture I was coding up the algorithm for multiplying two
binary integers, in PDP-8 assembly language. For those of you who aren’t
aware, the PDP-8 had no multiply instruction; you had to write an algorithm
to multiply numbers. Indeed, the PDP-8 didn’t even have a subtract
instruction; you had to use two’s complement and add a pseudo-negative
number (let the reader understand).

As I finished up the coding example, it occurred to me that I was scaring
my grandson to death. I mean, when I was 18 this kind of geeky detail
thrilled me; but maybe it wasn’t so attractive to an 18-year-old whose aunt
is trying to teach him how to write simple Clojure programs.

Anyway, it made me think of just how hard programming actually is. And it
is hard. It’s really hard. It may be the hardest thing that humans have ever
attempted.

Oh, I don’t mean it’s hard to write the code to calculate a bunch of prime
numbers, or a Fibonacci sequence, or a simple bubble sort. That’s not too
hard. But an Air Traffic Control system? A luggage management system? A
bill of materials system? Angry Birds? Now that’s hard. That’s really, really
hard.

I’ve known Mark Seemann for quite a few years now. I don’t remember
ever actually meeting him. It may be that we have never actually been
together in the same room. But he and I have interacted quite a bit in
professional newsgroups and social networks. He’s one of my favourite
people to disagree with.

He and I disagree on all kinds of things. We disagree on static versus
dynamic typing. We disagree on operating systems and languages. We
disagree on, well, lots of intellectually challenging things. But disagreeing
with Mark is something you have to do very carefully because the logic of
his arguments is impeccable.

So when I saw this book, I thought about how much fun it was going to be
to read through and disagree with. And that’s exactly what happened. I read
through it. I disagreed with some things. And I had fun trying to find a way
to make my logic supersede his. I think I may have even succeeded in one
or two cases—in my head—maybe.

But that’s not the point. The point is that software is hard; and much of the
last seven decades have been spent trying to find ways to make it a little bit
easier. What Mark has done in this book is to gather all the best ideas from
those seven decades and compile them in one place.

More than that, he has organized them into a set of heuristics and
techniques, and placed them in the order that you would execute them.
Those heuristics and techniques build on each other, helping you move
from stage to stage while developing a software project.

In fact, Mark develops a software project throughout the pages of this book,
while explaining each stage and the heuristics and techniques that benefit
that stage.

Mark uses C# (one of the things I disagree with ;-), but that’s not relevant.
The code is simple, and the heuristics and techniques are applicable to any
other language you might be using.

He covers things such as Checklists, TDD, Command Query Separation,
Git, Cyclomatic Complexity, Referential Transparency, Vertical Slicing,
Legacy Strangulation, and Outside-In Development, just to mention a few.

Moreover, there are gems scattered literally everywhere throughout these
pages. I mean, you’ll be reading along, and all of a sudden he’ll say
something like, “Rotate your test function 90 degrees and see if you can
balance it on the Act of the Arrange/Act/Assert triplet” or “The goal is not
to write code fast. The goal is sustainable software” or “Commit database
schema to git”.

Some of these gems are profound, some are just idle mentions, others are
speculations, but all of them are examples of the deep insight that Mark has
acquired over the years.

So read this book. Read it carefully. Think through Mark’s impeccable
logic. Internalise these heuristics and techniques. Stop and consider the
insightful gems as they pop out at you. And just maybe, when it comes time
for you to lecture your grandchildren, you won’t scare the devil out of them.

—Robert C. Martin

Preface

In the second half of the 2000s, I began doing technical reviews for a
publisher. After reviewing a handful of books, the editor contacted me
about a book on Dependency Injection.

The overture was a little odd. Usually, when they contacted me about a
book, it would already have an author and a table of contents. This time,
however, there was none of that. The editor just requested a phone call to
discuss whether the book’s subject matter was viable.

I thought about it for a few days and found the topic inspiring. At the same
time, I couldn’t see the need for an entire book. After all, the knowledge
was out there: blog posts, library documentation, magazine articles, even a
few books all touched on related topics.

On reflection, I realised that, while the information was all out there, it was
scattered, and used inconsistent and sometimes conflicting terminology.
There’d be value in collecting that knowledge and presenting it in a
consistent pattern language.

Two years later, I was the proud author of a published book.

After some years had gone by, I began to think about writing another book.
Not this one, but a book about some other topic. Then I had a third idea, and
a fourth, but not this one.

A decade went by, and I began to realise that when I consulted teams on
writing better code, I’d suggest practices that I’d learned from better minds
than mine. And again, I realised that most of that knowledge is already
available, but it’s scattered, and few people have explicitly connected the
dots into a coherent description of how to develop software.

Based on my experience with the first book, I know that there’s value in
collecting disparate information and presenting it in a consistent way. This
book is my attempt at creating such a package.

Who Should Read This Book
This book is aimed at programmers with at least a few years of professional
experience. I expect readers to have suffered through a few bad software
development projects; to have experience with unmaintainable code. I also
expect readers seeking to improve.

The core audience is ‘enterprise developers’—particularly back-end
developers. I’ve spent most of my career in that realm, so this simply
reflects my own expertise. But if you’re a front-end developer, a games
programmer, a development tools engineer, or something else entirely, I
expect you will still gain a lot from reading this book.

You should be comfortable reading code in a compiled, object-oriented
language in the C family. While I’ve been a C# programmer for most of my
career, I’ve learned a lot from books with example code in C++ or Java1.
This book turns the tables: Its example code is in C#, but I hope that Java,
TypeScript, or C++ developers find it useful, too.

1. If you’re curious about which books I mean, take a look at the bibliography.

Prerequisites
This isn’t a beginner’s book. While it deals with how to organise and
structure source code, it doesn’t cover the most basic details. I expect that
you already understand why indentation is helpful, why long methods are
problematic, that global variables are bad, and so on. I don’t expect you to
have read Code Complete [65], but I assume that you know of some of the
basics covered there.

A Note for Software Architects
The term ‘architect’ means different things to different people, even when
the context is constrained to software development. Some architects focus
on the big picture; they help an entire organisation succeed with its
endeavours. Other architects are deep in the code and mainly concerned
with the sustainability of a particular code base.

To the degree that I’m a software architect, I’m the latter kind. My expertise
is in how to organise source code so that it addresses long-term business
goals. I write about what I know, so to the degree this book is useful to
architects, it will be that type of architect.

You’ll find no content about Architecture Tradeoff Analysis Method
(ATAM), Failure Mode and Effects Analysis (FMEA), service discovery,
and so on. That kind of architecture is outside the scope of this book.

Organisation
While this is a book about methodologies, I’ve structured it around a code
example that runs throughout the book. I decided to do it that way in order
to make the reading experience more compelling than a typical ‘pattern
catalogue’. One consequence of this decision is that I introduce practices
and heuristics when they fit the ‘narrative’. This is also the order in which I
typically introduce the techniques when I coach teams.

The narrative is structured around a sample code base that implements a
restaurant reservation system. The source code for that sample code base is
available at informit.com/title/9780137464401.

If you want to use the book as a handbook, I’ve included an appendix with
a list of all the practices and information about where in the book you can
read more.

About the Code Style

http://informit.com/title/9780137464401

The example code is written in C#, which is a language that has rapidly
evolved in recent years. It’s picking up more and more syntax ideas from
functional programming; as an example, immutable record types were
released while I was writing the book. I’ve decided to ignore some of these
new language features.

Once upon a time, Java code looked a lot like C# code. Modern C# code, on
the other hand, doesn’t look much like Java.

I want the code to be comprehensible to as many readers as possible. Just as
I’ve learned much from books with Java examples, I want readers to be able
to use this book without knowing the latest C# syntax. Thus, I’m trying to
stick to a conservative subset of C# that ought to be legible to other
programmers.

This doesn’t change the concepts presented in the book. Yes, in some
instances, a more succinct C#-specific alternative is possible, but that would
just imply that extra improvements are available.

To Var or Not to Var
The var keyword was introduced to C# in 2007. It enables you to declare a
variable without explicitly stating its type. Instead, the compiler infers the
type from the context. To be clear, variables declared with var are exactly
as statically typed as variables declared with explicit types.

For a long time the use of this keyword was controversial, but most people
now use it; I do, too, but I occasionally encounter pockets of resistance.

While I use var professionally, writing code for a book is a slightly
different context. Under normal circumstances, an IDE isn’t far away. A
modern development environment can quickly tell you the type of an
implicitly typed variable, but a book can’t.

I have, for that reason, occasionally chosen to explicitly type variables.
Most of the example code still uses the var keyword because it makes the
code shorter, and line width is limited in a printed book. In a few cases,

though, I’ve deliberately chosen to explicitly declare a variable’s type, in
the hope that it makes the code easier to understand when read in a book.

Code Listings
The majority of the code listings are taken from the same sample code base.
It’s a Git repository, and the code examples are taken from various stages of
development. Each such code listing includes a relative path to the file in
question. Part of that file path is a Git commit ID.

For example, listing 2.1 includes this relative path: Restaurant/f729ed9/
Restaurant.RestApi/Program.cs. This means that the example is taken from
commit ID f729ed9, and the file is Restaurant.RestApi/Program.cs.In
other words, to view this particular version of the file, you check out that
commit:

$ git checkout f729ed9

When you’ve done that, you can now explore the Restaurant.RestApi/
Program.cs file in its full, executable context.

A Note on the Bibliography
The bibliography contains a mix of resources, including books, blog posts,
and video recordings. Many of my sources are online, so I have of course
supplied URLs. I’ve made an effort to mostly include resources that I have
reason to believe have a stable presence on the Internet.

Still, things change. If you’re reading this book in the future, and a URL has
become invalid, try an internet archive service. As I’m writing this,
https://archive.org is the best candidate, but that site could also be gone in
the future.

Quoting Myself

https://archive.org/

Apart from other resources, the bibliography also includes a list of my own
work. I’m aware that, as far as making a case, quoting myself doesn’t
constitute a valid argument in itself.

I’m not including my own work as a sleight of hand. Rather, I’m including
these resources for the reader who might be interested in more details.
When I cite myself, I do it because you may find an expanded argument, or
a more detailed code example, in the resource I point to.

Acknowledgements
I’d like to thank my wife Cecilie for love and support during all the years
we’ve been together, and my children Linea and Jarl for staying out of
trouble.

Apart from family, my first thanks go to my invaluable long-time friend
Karsten Strøbæk, who not only has tolerated my existence for 25 years, but
who was also the first reviewer on this book. He also helped me with
various tips and tricks, and added more entries to the index than I did.

I’d also like to thank Adam Tornhill for his feedback on the section about
his work.

I’m indebted to Dan North for planting the phrase Code That Fits in Your
Head in my subconscious, which might have happened as early as 2011
[72].

Register your copy of Code That Fits in Your Head on the InformIT
site for convenient access to updates and/or corrections as they
become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the
product ISBN (9780137464401) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on

http://informit.com/register

new editions and updates, please check the box to receive email
from us.

About the Author

Mark Seemann is a bad economist who’s found a second career as a
programmer, and he has worked as a web and enterprise developer since the
late 1990s. As a young manMarkwantedtobecomearockstar,but
unfortunately had neither the talent nor the looks – later, however, he
became a Certified Rockstar Developer. He has also written a Jolt Award-
winning book about Dependency Injection, given more than a 100
international conference talks, and authored video courses for both
Pluralsight and Clean Coders. He has regularly published blog posts since
2006. He lives in Copenhagen with his wife and two children.

I Acceleration

The first part of this book is loosely structured around a programming
narrative. The code examples all follow an example code base, from
creation of the first file, to completion of the first feature.

In the beginning, you’ll see detailed explanations of changes to the code. As
the chapters progress, I’ll skip some details. The purpose of the code
examples is to give you a context for the various practices and techniques
being introduced.

If I’ve skipped a detail that you’d like to know more about, you can consult
the Git repository that accompanies the book. Each code listing is tagged
with the commit ID that identifies the source.

The history of the commits that belong to this part is quite polished. If you
read through that part of the Git history, it’ll look as though I barely made
any mistakes. That’s not the case.

To err is human, and I make as many mistakes as you. One of the wonderful
features of Git, however, is that you can rewrite history. I’ve been rebasing
that part of the repository multiple times to make it as polished as I wanted
it.

I didn’t do that to cover my mistakes. I did it because I felt that for those
readers who’d like to learn from the repository, it’d be more educational if I
removed the noise of my mistakes.

The example code forms a narrative from which to introduce the practices
that I describe. In this part of the book, you’ll see the code accelerate
fromzerotoa deployed feature. But even if you aren’t working with
greenfield development, you should be able to use the techniques to
increase your efficiency.

1 Art or Science?

Are you a scientist or an artist? An engineer or a craftsman? Are you a
gardener or a chef? A poet or an architect?

Are you a programmer or a software developer? If so, then what are you?

My response to these questions is: Yes, none of the above.

While I self-identify as a programmer, I’m a little of all of the above. And
yet, none of those.

Questions like these are important. The software development industry is
about 70 years old, and we’re still figuring it out. One persistent problem is
how to think about it. Hence these questions. Is software development like
building a house? Is it like composing a poem?

Over the decades, we’ve tried sundry metaphors, but they all fall apart.
Developing software is like building a house, except when it isn’t.
Developing software is like growing a garden, except when it isn’t.
Ultimately, none of the metaphors fit.

I believe, though, that how we think about software development shapes
how we work.

If you think that developing software is like building a house, you’ll make
mistakes.

1.1 Building a House
For decades, people have likened developing software to building a house.
As Kent Beck puts it:

“Unfortunately, design in software has been shackled by metaphors from physical design
activities.” [5]

It’s one of the most pervasive, beguiling, and obstructive metaphors of
software development.

1.1.1 The Problem with Projects
If you think of developing software as being similar to building a house, the
first mistake you’ll make is to think of it as a project. A project has a start
and an end. Once you reach the end, the work is done.

Only unsuccessful software ends. Successful software endures. If you’re
fortunate enough to develop successful software, when you’re done with a
release you’ll move on to develop the next. This can go on for years. Some
successful software lasts for decades1.

1. I’m writing this book in —a program first released in 1984!

Once you’ve built a house, people can move in. You’ll need to maintain it,
but the cost of that is only a fraction of what it cost to build it. Granted,
software like that exists. Particularly in the enterprise segment, once you’ve
built2 an internal line-of-business application, it’s done and users are
fettered to it. Such software enters maintenance mode once the project is
done.

2. This is a verb I aspire to never use about software development, but in this particular context, it
makes sense.

But most software isn’t like that. Software that competes with other
software is never done. If you’re caught in the house-building metaphor,
you may think of it as a series of projects. You may plan to release the next
version of your product in nine months, but to your horror find that your
competitor publishes improvements every three months.

So you work hard at making the ‘projects’ shorter. When you’re finally able
to deliver every three months, your competitor is on a one-month release
cycle. You can see where this ends, can’t you?

It ends with Continuous Delivery [49]. That, or you’ll eventually go out of
business. Based on research, the book Accelerate [29] argues convincingly
that the key capability distinguishing high-performing from low-performing
teams is the ability to release at the drop of a hat.

When you can do that, the notion of a software development project no
longer makes sense.

1.1.2 The Problem with Phases
Another misconception often produced by the house-building metaphor is
that software development should happen in distinct phases. When building
a house, an architect first draws the plans. Then you prepare the logistics,
move materials on site, and only then can you begin to build.

When this metaphor is applied to software development, you appoint a
software architect whose responsibility it is to produce a plan. Only when
the plan is done should development start. This perspective on software
development sees the planning phase as the phase where intellectual work
happens. According to the metaphor, the programming phase is like the
actual construction phase of a house. Developers are seen as
interchangeable workers3, basically little more than glorified typists.

3. I’ve nothing against construction workers; my beloved father was a mason.

Nothing could be farther from the truth. As Jack Reeves pointed out in 1992
[87], the construction phase of software development is when you compile
source code. It’s virtually free, quite unlike construction of a house. All
work happens in the design phase, or as Kevlin Henney so eloquently put it:

“The act of describing a program in unambiguous detail and the act of programming are one and
the same.” [42]

In software development, there’s no construction phase to speak of. This
doesn’t imply that planning isn’t useful, but it does indicate that the house-
building metaphor is at best unhelpful.

1.1.3 Dependencies
When you build a house, physical reality imposes constraints. You must
first lay the foundations, then raise the walls, and only then can you put on
the roof. In other words, the roof depends on the walls, which depend on the
foundation.

This metaphor tricks people into thinking that they need to manage
dependencies. I’ve had project managers who produced elaborate Gantt
charts to plan a project.

I’ve worked with numerous teams, and most of them start any new
development project by designing a relational database schema. The
database is the foundation of most online services, and teams seem
incapable of shaking the notion that you could develop a user interface
before you have a database.

Some teams never manage to produce a working piece of software. After
they’ve designed the database, they figure that they need a framework to go
with it. So they proceed to reinvent an object-relational mapper, that
Vietnam of computer science [70].

The house-building metaphor is harmful because it deceives you into
thinking about software development in a particular way. You’ll miss
opportunities that you don’t see because your perspective doesn’t align with
reality. The reality of software development is that, metaphorically
speaking, you can start with the roof. You’ll see an example of this later in
this book.

1.2 Growing a Garden
The house-building metaphor is wrong, but perhaps other metaphors work
better. The gardening metaphor has been gaining traction in the 2010s. It’s
not accidental that Nat Pryce and Steve Freeman named their excellent
book Growing Object-Oriented Software, Guided by Tests [36].

This view on software development sees software as a living organism that
must be tended, coaxed, and pruned. It’s another compelling metaphor.
Have you ever felt that a code base has a life of its own?

It can be illuminating to view software development in this light. At least it
forces a change in perspective that might shake your belief that software
development is like building a house.

By viewing software as a living organism, the gardening metaphor
emphasises pruning. Left to itself, a garden will grow wild. In order to
extract value from a garden, a gardener must tend to it by killing weeds
while aiding and supporting the desired plants. Translated into software
development, it helps focusing on activities that prevent code rot, such as
refactoring and deletion of dead code.

I don’t find this metaphor nearly as problematic as the house-building
metaphor, but I still don’t think that it paints the whole picture.

1.2.1 What Makes a Garden Grow?
I like the gardening metaphor’s emphasis on activities that combat disorder.
Just as you must prune and weed a garden, you must refactor and pay off
technical debt in your code bases.

The gardening metaphor, on the other hand, says little about where code
comes from. In a garden, plants grow automatically. All they need are
nutrients, water, and light. Software, on the other hand, doesn’t grow
automatically. You can’t just throw a computer, crisps, and soft drinks into a
dark room and expect software to grow from that. You’d be lacking an
important ingredient: programmers.

Code is written by someone. This is an active process, and the gardening
metaphor doesn’t have much to say about it. How do you decide what to
write, and what not to write? How do you decide how to structure a piece of
code?

If we wish to improve the software development industry, we have to
address these questions, too.

1.3 Towards Engineering
Other metaphors for software development exist. For example, I already
mentioned the term technical debt, which implies an accountant’s view. I’ve
also touched on the process of writing code, which suggests a similarity to
other kinds of authoring. Few metaphors are entirely wrong, but none are
perfectly right either.

There are reasons I’ve targeted the house-building metaphor in particular.
One is that it’s so pervasive. Another is that it seems so wrong as to be
unsalvageable.

1.3.1 Software as a Craft
I came to the conclusion that the house-building metaphor is harmful many
years ago. Once you dispose of a viewpoint, you typically go looking for a
new one. I found it in software craftsmanship.

It seems compelling to view software development as a craft, as essentially
skilled work. While you can take an education in computer science, you
don’t have to. I didn’t4.

4. In case you’re wondering, I do have a university degree. It’s in economics, but apart from a stint in
the Danish Ministry of Economic Affairs, I never used it.

The skills you need to work as a professional software developer tend to be
situational. Learn how this specific code base is structured. Learn how to
use that particular framework. Suffer through the ordeal of wasting three
days troubleshooting a bug in production. Things like that.

The more you do that, the more skilled you become. If you stay in the same
company, and work in the same code base for years, you may become a

specialised authority, but will that help you if you decide to work
somewhere else?

You can learn faster by moving from code base to code base. Try some
back-end development. Do some front-end development. Perhaps try some
game programming, or some machine learning. This will expose you to a
wide range of problems that will accumulate as experience.

This is strikingly similar to the old European tradition of journeyman years.
A craftsman like a carpenter or roofer would travel around Europe, working
for a while in a place before moving on to the next. Doing so exposed them
to alternative solutions to problems. It made them better at their craft.

It’s compelling to think of software developers like that. The book The
Pragmatic Programmer is even subtitled From Journeyman to Master [50].

If this is true, it follows that we should structure our industry accordingly.
We should have apprentices who work alongside masters. We could even
organise guilds.

If it’s true, that is.

Software craftsmanship is another metaphor. I find it illuminating, but when
you shine a bright light on a subject, you also produce shadows. The
brighter the light, the darker the shadow, as illustrated in figure 1.1.

Figure 1.1 The brighter the light you shine on an object, the darker the
shadows seem.

There’s still something missing from the picture.

1.3.2 Heuristics
My software craftsmanship years were, in some sense, a period of utter
disillusionment. I saw skill as nothing but accumulated experience. It
seemed to me that there was no methodology to software development.
That everything depended on circumstances. That there was no right or
wrong way to do things.

That programming was basically an art.

That suited me well. I’ve always liked art. When I was young, I wanted to
be an artist5.

5. My oldest aspiration was to become a comic book artist in the European tradition. Later, in my
teenage years, I picked up the guitar and dreamt of becoming a rock star. It turned out that while I
enjoyed both drawing and playing, I wasn’t particularly talented.

The problem with that viewpoint is that it doesn’t seem to scale. In order to
‘create’ new programmers, you’d have to take them on as apprentices until
they have learned enough to become journeymen. From there, mastery is
several more years away.

Another issue with viewing programming as an art or a craft is that it, too,
doesn’t fit reality. Around 2010, it began to occur to me [106]that I was
following heuristics when I programmed—rules of thumb and guidelines
that can be taught.

At first, I didn’t make much of it. Over the years, however, I regularly
found myself in positions where I was coaching other developers. When I
did that, I’d often formulate reasons for writing code in particular ways.

I began to realise that I’d probably been wrong in my nihilism. That
perhaps, guidelines might be the key to turning programming into an
engineering discipline.

1.3.3 Earlier Notions of Software Engineering

The notion of software engineering dates back to the late 1960s6.Itwas
related to the contemporary software crisis, the dawning realisation that
programming is hard.

6. The term may be older than that. It’s not entirely clear to me, and I wasn’t alive back then, so I
don’t recall. It seems uncontroversial, though, that two NATO conferences held in 1968 and 1969
popularised the term software engineering [4].

Programmers back then actually had a good grasp of what they were doing.
Many of the illustrious figures of our industry were active in those days:
Edsger Dijkstra, Tony Hoare, Donald Knuth, Alan Kay. If you’d asked
people back then if they thought that programming would be an engineering
discipline in the 2020s, they’d probably say yes.

You may have noticed that I discuss the notion of software engineering as
an aspirational goal, rather than a fact of everyday software development.
It’s possible that there are pockets of actual software engineering in the
world7,

7. NASA seems like a good bet on being one of those pockets.

but in my experience, most software development is conducted in a
different style.

I’m not alone in feeling that software engineering is still a future goal.
Adam Barr puts it beautifully:

“If you’re like me, you dream of a day when software engineering is studied in a thoughtful,
methodical way, and the guidance given to programmers sits atop a foundation of experimental
results rather than the shifting sands of individual experience.” [4]

He explains how software engineering was well on its way, but then
something happened that derailed it. What happened, according to Barr, was
personal computers. They created a generation of programmers who’d
taught themselves to program at home. Since they could tinker with
computers in solitude, they remained largely ignorant of the body of
knowledge that already existed.

This state of affairs seems to persist to this day. Alan Kay calls computing
Pop Culture:

“But pop culture holds a disdain for history. Pop culture is all about identity and feeling like
you’re participating. It has nothing to do with cooperation, the past or the future—it’s living in the
present. I think the same is true of most people who write code for money. They have no idea where
[their culture came from]” [52]

We may have squandered fifty years by making little progress on software
engineering, but I think that we may have made progress in other ways.

1.3.4 Moving Forward with Software Engineering
What does an engineer do? Engineers design and oversee the construction
of things, from big structures such as bridges, tunnels, skyscrapers, and
power plants, to tiny objects like microprocessors8. They help produce
physical objects.

8. I once had a friend who was a chemical engineer by education. After university, he became a
brewer with Carlsberg. Engineers also brew beer.

Dronning Alexandrine’s bridge, popularly called Mønbroen. Completed
in 1943, it connects Sealand with the smaller island of Møn, Denmark.

Programmers don’t do that. Software is intangible. As Jack Reeves pointed
out [87], since there’s no physical object to produce, construction is
virtually free. Software development is principally a design activity. When
we type code into an editor it corresponds to engineers drawing plans,
rather than workers constructing things.

‘Real’ engineers follow methodologies that usually lead to successful
outcomes. That’s what we programmers want to do as well, but we have to
be careful to copy only those activities that make sense in our context.
When you design a physical object, real construction is expensive. You
can’t just try to build a bridge, experiment with it for a while, only to decide
that it’s no good, tear it down, and start over. Because real-world
construction is expensive, engineers engage in calculations and simulations.
It takes less time and fewer materials to calculate the strength of a bridge
than it does to build it.

There’s an entire engineering discipline that relates to logistics. People
engage in meticulous planning because that’s the safest and least expensive
way to build physical things.

That’s the part of engineering we don’t need to copy.

But there’s plenty of other engineering methodologies that can inspire us.
Engineers also do creative, human work, but it’s often structured in a
framework. Specific activities should be followed by other activities. They
review and sign off on each other’s work. They follow checklists [40].

You can do that as well.

That’s what this book is about. It’s a guided tour of heuristics I’ve found
useful. I’m afraid it’s closer to what Adam Barr calls the shifting sands of
individual experience than to a scientifically founded set of laws.

I believe that this reflects the current state of our industry. Anyone who
believes that we have firm scientific evidence for anything should read The
Leprechauns of Software Engineering [13].

1.4 Conclusion
If you think about the history of software development, you probably think
of advances at orders of magnitudes. Yet, many of those advances are
advances in hardware, not software. Still, in the last fifty years, we’ve
witnessed tremendous progress in software development.

Today, we have much more advanced programming languages than fifty
years ago, access to the Internet (including de facto online help in the form
of Stack Overflow), object-oriented and functional programming,
automated testing frameworks, Git, integrated development environments,
and so on.

On the other hand, we’re still struggling with the software crisis, although
it’s debatable whether anything can be called a crisis if it’s been going on
for half a century.

Despite serious efforts, the software development industry still doesn’t
resemble an engineering discipline. There are some fundamental differences
between engineering and programming. Until we understand that, we can’t
make progress.

The good news is that you can do many of the things that engineers do.
There’s a mindset, and a collection of processes you can follow.

As the science-fiction author William Gibson said:

“The future is already here—it’s just not very evenly distributed”9

9. This is one of those quotes that have a nebulous origin. It seems uncontroversial that the idea and
overall phrasing is Gibson’s, but exactly when he first stated it is unclear [76].

As the book Accelerate charts, some organisations use advanced techniques
today, while other lag behind [29]. The future is, indeed, unevenly
distributed. The good news is that the advanced ideas are free for the taking.
It’s up to you to start using them.

In chapter 2, you’ll get your first taste of concrete activities you can
perform.

2 Checklists

How do you transition from programmer to software engineer? I don’t want
to claim that this book has the definitive answer to that question, but I hope
it can set you on the path.

I believe that it’s so early in the history of software development that there
are lots of things we still don’t understand. On the other hand, we can’t wait
until we’ve figured it all out. We learn by experimentation. The activities
and methodologies presented in this book are inspired by many great people
who came before me1. These practices have worked for me and the many
people I’ve taught. I hope that they’ll work for you as well, or that they’ll
inspire you to identify even better ways to work.

1. There are too many to be listed here, but take a look at the bibliography. I’ve done my best to
credit everyone for their contributions, but I’ve certainly forgotten some, for which I apologise.

2.1 An Aid to Memory
A fundamental problem with software development is that there’s a lot
going on. Our brains aren’t good at keeping track of many things at the
same time.

We also have a tendency to skip doing things that don’t seem important
right now.

The problem isn’t that you don’t know how to do a thing; it’s that you
forget to do it, even though you know that you ought to.

This problem isn’t isolated to programming. Pilots suffer from it, and they
invented a simple solution to the problem: checklists.

I realise that this sounds incredibly dull and constraining, but consider the
origins of the checklist. According to Atul Gawande [40] it started in 1935
with the B-17 bomber. Compared to previous airplanes, the B-17 was much
more complex. In fact, it was so complex that it crashed on a demonstration
flight for potential army buyers, killing two crew members, including the
pilot.

An investigation into the crash concluded that it was due to ‘pilot error’.
Given that the pilot was one of the army air corps’ most experienced test
pilots, this could hardly be written off as lack of training. As one newspaper
put it, the plane was just “too much airplane for one man to fly.” [40]

A group of test pilots came up with a solution: a checklist of simple actions
to perform during take-off, and another to follow during landing.

Simple checklists empower skilled professionals such as airplane pilots.
When a task is complex, it’s almost inevitable that you forget to consider a
thing or two. A checklist helps you focus on the hard parts of your task by
taking your mind off the trivial things. You don’t have to make an effort to
remember to do all the trivial things; you just have to remember to refer to
the checklist at various pause points.

It’s important to understand that checklists are supposed to enable, support,
and liberate practitioners. They’re not there to monitor or audit. The power
of checklists is that you use them in the situation—not that they leave any
trail of evidence. Perhaps the most powerful lists are those that specifically
don’t leave any audit trail. These could simply be lists on a wall poster, a
clipboard, in a ring binder, or similar.

Checklists are not intended to constrain you, but rather to improve results.
As one of Atul Gawande’s informants put it:

“When surgeons make sure to wash their hands or to talk to everyone on the team” – he’d seen the
surgery checklist – “they improve their outcomes with no increase in skill. That’s what we are
doing when we use the checklist.” [40]

If pilots and surgeons can follow checklists, then so can you. The key is to
improve the outcome with no increase in skill.

At various points in the coming chapters, I’m going to present you with
checklists. This isn’t the only ‘engineering method’ that you’ll learn, but it’s
the simplest. It’s a good place to start.

A checklist is just an aid to memory. It doesn’t exist to restrict you; it exists
to help you remember to perform trivial, but important actions, such as
washing your hands before surgery.

2.2 Checklist for a New Code Base
The checklists I’ll present in this book are suggestions. They’re based on
how I approach programming, but your circumstances differ from mine, so
they may not fit perfectly. Just like the take-off checklist for an Airbus
A380 is different from the take-off checklist for the B-17.

Use my checklist suggestions verbatim, or as inspiration.

Here’s a checklist for starting a new code base:

 Use Git
 Automate the build

 Turn on all error messages

That doesn’t look like much, and that’s deliberate. A checklist isn’t a
complex flowchart with detailed instructions. It’s a simple list of items that
you can cover in a few minutes.

Checklists come in two forms: read-do and do-confirm [40]. With a read-do
checklist, you read each item on the list and immediately perform the action
before you move on to the next item. With a do-confirm checklist, you do
all the things, and then you run through the checklist and confirm that
you’ve done all the activities.

I’ve deliberately left the above list vague and conceptual, but since it’s
worded in the imperative form, it suggests a read-do checklist. You could
easily turn it into a do-confirm checklist, but if you do, you should make

sure to go through it with at least one other person. That’s what pilots do.
One reads the checklist and the other confirms. It’s too easy to skip a step if
you’re by yourself, but a copilot can keep you honest.

Exactly how to use Git, automate the build, and turn on all error messages
is up to you, but in order to make the above checklist concrete, I’ll show
you a detailed, running example.

2.2.1 Use Git

Git has become the de-facto standard source control system. Use it2.
Compared to centralised source control systems such as CVS or
Subversion, a distributed source control system offers a tremendous
advantage. If you know how to use it, that is.

2. Despite being superior to most alternatives, Git has plenty of issues. The biggest problem is its
complicated and inconsistent command-line interface. If a better distributed source control system
comes along in the future, feel free to migrate. At the time when I’m writing this, however, there’s
no better alternative.

Git isn’t the most user-friendly piece of technology on the planet, but
you’re a programmer. You’ve managed to learn at least one programming
language. Compared to that, learning the basics of Git is easy. Do yourself a
favour and invest one or two days learning the basics of it. Not a graphical
user interface on top of it, but how it actually works.

Git gives you the ability to boldly experiment with your code. Try
something out, and if it doesn’t work, just undo your changes. It’s the
ability to work as a source control system on your hard drive that makes Git
stand above centralised version control systems.

There are several graphical user interfaces (GUIs) on top of Git, but in this
book, I’ll stick to the command line. Not only is it the foundation of Git, it’s
also the way I normally prefer to work with it. Although I’m on Windows, I
work in Git Bash.

The first thing you should do in a new code base is to initialise a local Git
repository3. Open your command-line window in the directory where you’d

like to put the code. At this time you don’t have to worry about online Git
services like GitHub; you can always connect the repository later. Then
write4:

3. I’d stick to this rule for any code base that I expect will live for more than a week. I sometimes
don’t bother initialising a Git repository for truly ephemeral code, but my threshold for creating a
Git repository is quite low. You can always undo it again by deleting the .git directory.

4. Don’t write the $—it’s just there to indicate the command-line prompt. I’ll include it throughout
the book when showing what happens on the command line.

$ git init

That’s it. You may also consider following the advice from my friend
Enrico Campidoglio [17] and add an empty commit:

Click here to view code image

$ git commit --allow-empty -m "Initial commit"

I usually do this because it enables me to rewrite the history of my
repository before I publish it to an online Git service. You don’t have to do
this, though.

2.2.2 Automate the Build
When you have hardly any code, it’s easy to automate compilation, testing,
and deployment. Trying to retrofit Continuous Delivery [49] onto an
existing code base can seem a formidable undertaking. That’s the reason I
think you should do this right away.

Currently there’s no code, only a Git repository. You’ll need a minimal
application in order to have something to compile. Create the minimal
amount of code that you’re able to deploy, and then deploy it. This is an
idea similar to a Walking Skeleton [36], but one step earlier in the
development process, as suggested by figure 2.1.

Figure 2.1 Use a wizard or scaffolding program to create a shell of the
application, commit it, and deploy it. Then use an automated test to
create a Walking Skeleton [36] that you commit and deploy.

A Walking Skeleton is an implementation of the thinnest possible slice of
real functionality that you can automatically build, deploy, and test end-to-
end [36]. You can do that next, but I think that there’s value in first
establishing a deployment pipeline [49].

Common Issues Related to Establishing a Deployment
Pipeline

What if you can’t set up a deployment pipeline yet? Perhaps you don’t
have a Continuous Integration server. If so, make it a priority to get
one. You don’t have to get an actual server. These days, there’s plenty
of cloud-based Continuous Delivery services.

Perhaps you don’t have a production environment yet. Try to work
around this issue by configuring your deployment pipeline so that you
can release to some preproduction environment. Preferably one that
looks as much like the production environment as possible. Even if
you can’t get your hands on hardware that resembles the production
environment, at least try to simulate the production system’s network

topology. You can use smaller machines, virtual machines, or
containers.

Most of the policies that I suggest in this book are free. This one tends
to cost money, for servers, software, or cloud-based services. The
amounts are typically only fractions of a programmer’s salary, so
compared to the total cost of developing software, it’s money well
spent.

Before you set up a deployment pipeline, however, you should make sure
that you can easily compile the code and run developer tests. You’ll need
some code.

This book is composed around an example that acts as its backbone. You’ll
see how to develop a simple online restaurant reservation system in C#.
Right now, we need a web service that’ll handle HTTP requests.

In order to move in that direction, the simplest way to get started is to create
an ASP.NET Core web project. I’ll be using Visual Studio to do this5. While
I like to use command-line interfaces for interactions I frequently perform, I
like the guidance an IDE can give me for actions I only do now and then.
You can, if you’d like, use a command-line tool instead, but the result
should be the same: a few files and a working web site. Listings 2.1 and 2.2
show6 the files that Visual Studio created.

5. I’ll not show any screen shots or otherwise get into details about this process. Before the book is
published, these would be out of date. It is, however, a simple process involving only one or two
steps.

6. C# is a relatively verbose language, so I generally only show the highlights of a file. I’ve left out
using directives and namespace declarations.

When you run the web site, it serves a single text file with the contents:

Hello World!

That’s good enough for now, so commit the code to Git.

Listing 2.1 Default ASP.NET Core web service entry point, generated by
Visual Studio. (Restaurant/f729ed9/Restaurant.RestApi/Program.cs)
Click here to view code image

public class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args)

=>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

}

The goal in this step is to automate the build. While you can open your IDE
and use it to compile the code, that’s not automatable. Create a script file
that performs the build, and commit that to Git as well. Initially, it’s as
simple as listing 2.3 shows.

I spend all of my command-line time in Bash, despite working in Windows,
so I’ve defined a shell script. You can create a .bat file, or a PowerShell
script instead, if that’s more to your liking7. The important part is that right
now, it calls dotnet build. Notice that I’m configuring a Release build.
The automated build should reflect what will eventually go into production.

7. If you need to do something more complex, such as assemble documentation, compile reusable
packages for package managers, and so on, you may consider a full-blown build tool. But start
simple, and only add complexity if you need it. Often, you don’t.

As you add more build steps, you should add them to the build script as
well. The point of the script is that it should serve as a low-friction tool that
developers can run on their own machine. If the build script passes on a
developer’s machine, it’s OK to push the changes to the Continuous
Integration server.

Listing 2.2 Default Startup file, generated by Visual Studio. I’ve edited the
comment line breaks to make them fit on the page.
(Restaurant/f729ed9/Restaurant.RestApi/Startup.cs)
Click here to view code image

public class Startup

{

 // This method gets called by the runtime. Use this method

to add

 // services to the container.

 // For more information on how to configure your

application,

 // visit https://go.microsoft.com/fwlink/?LinkID=398940

 public void ConfigureServices(IServiceCollection services)

 {

 }

 // This method gets called by the runtime. Use this method

to configure

 // the HTTP request pipeline.

 public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapGet("/", async context =>

 {

 await context.Response.WriteAsync("Hello

World!");

 });

 });

 }

}

Listing 2.3 Build script. (Restaurant/f729ed9/build.sh)
Click here to view code image

#!/usr/bin/env bash

dotnet build --configuration Release

The next step should be to establish your deployment pipeline. When
you’ve added new commits to master this should trigger a process that (if
successful) deploys the changes to your production environment, or at least
makes everything ready so that deployment is but a manual sign-off away.

The details involved in doing this are beyond the scope of this book. They
depend on which Continuous Integration server or service you use, as well
as its version. This changes all the time. I could show you how to enable
this on Azure DevOps Services, Jenkins, TeamCity, and so on, but then this
would become a book about that particular technology.

2.2.3 Turn On all Error Messages
I once sat with another programmer to teach him how to add unit tests to an
existing code base. Soon we ran into trouble. The code compiled, but didn’t
do what it was supposed to do. He started to frantically navigate around the
code base, chaotically changing a thing here, a line of code there. I asked
him:

“Could we see if there are any compiler warnings?”

I had a fairly good idea about what the problem was, but I try to help people
by letting them discover things for themselves. You learn better that way.

“That’s no use,” he replied. “There are hundreds of compiler warnings in
this code base.”

That turned out to be true, but I insisted that we looked through the list, and
I quickly found the warning I knew would be there. It correctly identified
the problem.

Compiler warnings and other automated tools can detect problems with
code. Use them.

In addition to using Git, this is one of the lowest-hanging fruits you can
pick. I’m bemused that so few people use the tools that are readily available
to them.

Most programming languages and environments come with various tools
that’ll check your code, such as compilers, linters, code analysis tools, and
style and formatting guards. Use as many as you can; they’re rarely wrong.

In this book I’ll be using C# for examples. It’s a compiled language, and
compilers typically emit warnings whenever they detect code that compiles,
but is most likely wrong. These warnings are usually correct, so it pays to
take heed of them.

As the anecdote illustrates, it can be difficult to discover a new compiler
warning if you already have 124 other warnings. For that reason, you
should have zero tolerance for warnings. You should have zero warnings.

In fact, you should treat warnings as errors.

All compiled languages I’ve worked with come with an option to turn
compiler warnings into compiler errors. That’s an effective way to prevent
warnings from accumulating.

It can seem like a formidable task to address hundreds of existing warnings.
It’s much easier to address a single warning the moment it appears. For that
reason, turn the warnings-as-errors option on as one of the first things you
do in a new code base. That effectively prevents any compiler warnings
from accumulating.

When I do that in the code base introduced in section 2.2.2, the code still
compiles. What little code Visual Studio had generated for me fortunately
doesn’t emit any warnings8.

8. In Visual Studio, the warnings-as-errors settings is associated with a build configuration. You
should definitely treat warnings as errors in Release mode, but I also do it in Debug mode. If you
want to change this setting for both configurations, you have to explicitly do so. Perhaps you
should make that part of your checklist.

Many languages and programming environments come with additional
automated tools you can use. A linter, for example, is a tool that warns you
if a piece of code seems to be exhibiting a code smell. Some even check
spelling errors. There are linters for such diverse languages as JavaScript
and Haskell.

C# comes with a similar set of tools called analysers. While turning
warnings into errors is only a checkbox somewhere, adding analysers is a
little more involved. Still, with the latest version of Visual Studio, it’s
straightforward9.

9. Again, I’m not describing the actual steps required to do this, because a detailed description is
likely to be outdated before the book is published.

These analysers represent decades of knowledge about how to write .NET
code. They began as an internal tool called UrtCop. It was used during early
development of the .NET framework itself, so it predates .NET 1.0. It was
later renamed to FxCop [23]. It has lived an uneasy existence in the .NET
ecosystem, but has recently been re-implemented on top of the Roslyn
compiler tool chain.

It’s an extensible framework that contains an abundance of guidelines and
rules. It looks for violations of naming conventions, potential security
problems, incorrect use of known library APIs, performance issues, and
much more.

When activated in the sample code shown in listings 2.1 and 2.2, the default
rule set emits no fewer than seven warnings! Since the compiler now treats
warnings as errors, the code no longer compiles. At first blush, this may
seem to get in the way of getting work done, but the only thing this should
upset is the illusion that code is maintainable without careful contemplation.

Seven warnings today are easier to address than hundreds of warnings in
the future. Once you get over the shock, you realise that most of the fixes
involve deleting code. You only have to make one change to the Program
class. You can see the result in listing 2.4. Can you spot the change?

Listing 2.4 ASP.NET Core web service entry point, after analyser warnings
have been addressed. (Restaurant/caafdf1/Restaurant.RestApi/Program.cs)
Click here to view code image

public static class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args)

=>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

}

The change to the Program class is that it’s now marked with the static
keyword. There’s no reason for a class to support instantiation when it has
only shared members. That’s an example of a code analysis rule. It’s hardly
of much import here, but on the other hand, the fix is as simple as adding a
single keyword to the class declaration, so why not follow the advice? In
other cases, that rule can help you make the code base easier to understand.

Most of the changes that I had to make affect the Startup class. Since they
involve deletion of code, I think the result is an improvement. Listing 2.5
shows the result.

Listing 2.5 Startup file after analyser warnings have been addressed.
Compare with listing 2.2.
(Restaurant/caafdf1/Restaurant.RestApi/Startup.cs)
Click here to view code image

public sealed class Startup

{

 // This method gets called by the runtime. Use this method

to configure

 // the HTTP request pipeline.

 public static void Configure(

 IApplicationBuilder app,

 IWebHostEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapGet("/", async context =>

 {

 await context.Response.WriteAsync("Hello

World!")

 .ConfigureAwait(false);

 });

 });

 }

}

What changed? Most noticeably, I deleted the ConfigureServices method,
since it didn’t do anything. I also sealed the class and added a call to
ConfigureAwait.

Each code analysis rule comes with online documentation. You can read
about the motivation for the rule, and how to address warnings.

Nullable Reference Types

C# 8 introduces an optional feature known as Nullable reference
typesa.

It enables you to use the static type system to declare whether or not
an object can be null. When the feature is enabled, objects are
assumed to be non-nullable, that is, that they can’t be null.

If you want to declare that an object can be null, you adorn the type
declaration with a ? (question mark), as in IApplicationBuilder?
app.

Being able to distinguish between objects that aren’t supposed to be
null from objects that may be null helps reduce the amount of
defensive coding you need to add. The feature has the potential to
reduce the number of run-time defects in your system, so turn it on.
Turn it on when the code base is new, so that you don’t have to deal
with too many compiler errors.

When I turn on this feature for the sample code base shown in this
chapter, the code still compiles.

aThe way Microsoft names concepts and features can be confusing. Like all other mainstream
C-based languages, reference types have always been nullable in the sense that objects can be
null. The feature should really be called non-nullable reference types.

Static code analysis is like an automated code review. In fact, when a
development organisation contacts me because they’d like me to do a C#
code review, I first tell them to run the analysers. That’ll save them hours
off my fee.

I typically don’t hear from that potential customer again10. When you run
such analysers over an existing code base, you can easily get thousands of
warnings and feel overwhelmed. To prevent that, start using those tools
right away.

10. I’m a terrible businessman... or am I?

Contrary to compiler warnings, static code analysis tools like linters or the
.NET Roslyn analysers tend to produce some false positives11. The
automated tools typically give you various options to suppress false
positives, so that’s hardly a reason to spurn them.

11. I realise that this is confusing, but here it is: a positive means a warning, that is that the code
looks wrong. That doesn’t sound positive, but in the terminology of binary classification, positive

indicates the presence of a signal, whereas negative indicates absence. It’s also used in software
testing and medicine. Just consider what it means to be Covid-19-positive!

Treat compiler warnings as errors. Treat linter and static code analysis
warnings as errors. At first it’ll be frustrating, but it’ll improve the code. It
might make you a better programmer as well.

Is that engineering? Is that it? It’s not all you can do, but it’s a good first
step. Engineering, broadly speaking, is to use all the heuristics and
deterministic machinery you can to improve the chance of ultimate success.
Those tools are like automated checklists. Every time you run them, they
control for thousands of potential issues.

Some of them have been around for a long time, but in my experience few
people use them. The future is unevenly distributed. Turn the controls on.
Improve the outcome with no increase in skill.

Treating warnings as errors is easiest to do at the beginning. When a code
base is brand-new, there’s no code to warn about. This lets you deal with
errors one at a time.

2.3 Adding Checks to Existing Code Bases
In the real world, you rarely get the opportunity to begin a new code base.
Most professional software development involves working with existing
code. While it’s less demanding to treat warnings as errors in a new code
base, it’s not impossible in an existing code base.

2.3.1 Gradual Improvement
The key is to gradually turn on the extra guards. Most existing code bases
contain several libraries12, as exemplified in figure 2.2. Turn on the extra
checks one library at a time.

12. Libraries are also known as packages. Visual Studio developers will often refer to libraries as
projects within a solution.

Figure 2.2 A code base made from packages. In this example, the
packages are HTTP API, Domain Model, and Data Access.

You can often turn on one type of warning at a time. In an existing code
base, you may already have hundreds of compiler warnings. Extract the list
and group it by type. Then pick a particular type of warning that has
perhaps a dozen instances, and fix all of those warnings. Fix them while
they’re still compiler warnings, so that you can keep working with the code.
Check your changes into Git every time you’ve made an improvement.
Merge those gradual improvements into master.

Once you’ve eliminated the last warning of a given type (in that part of the
code base), turn those warnings into errors. Then move on to another type
of warning, or address the same type in another part of the code base.

You can do the same with linters and analysers. With .NET analysers, for
example, you can configure which rules to enable. Address one rule at a
time, and once you’ve eliminated all warnings produced by a given rule,
turn that rule on so that it prevents all future instances.

Likewise, C#’s nullable reference types feature can be gradually enabled.

The key, in all cases, is to follow the Boy Scout Rule [61]: leave the code in
a better state than you found it.

2.3.2 Hack Your Organisation
When I talk at conferences and in user groups, people often approach me.
Usually they are inspired, but feel that their manager will not let them focus
on internal quality.

The benefit of treating warnings as errors is that you add an institutional
quality gate. If you treat warnings as errors and turn on static code analysis,
you relinquish some control. Loss of control doesn’t sound good, but it can
sometimes be an advantage.

When you’re facing pressure to ‘just deliver’ because ‘we don’t have time
to do it by the book’, imagine replying,

“Sorry, but if I do that, the code doesn’t compile.”

Such a reply has the potential to curb stakeholders’ insistence on ignoring
engineering discipline. It’s not strictly the case that you can’t possibly
circumvent any of those automatic checks, but you don’t have to tell
everyone that. The stratagem is that you turn what used to be a human
decision into a machine-enforced rule.

Is this morally appropriate? Use your judgment. As a professional software
developer, you’re the technical expert. It’s literally your job to make
technical decisions. You can report all details to your superiors, but a lot of
the information will be meaningless to nontechnical managers. Providing
technical expertise includes not confusing stakeholders with details they
can’t make sense of or use.

In a healthy organisation, the best strategy is to be open and honest about
what you do. In an unhealthy organisation, for example an organisation
with a substantial ‘hustle culture’, adopting a counter-strategy might be
more appropriate. You can use automated quality gates to hack the culture
of your organisation. Even if this involves mild subterfuge, you could still
argue that the ultimate goal is to support good software engineering. This
should also be advantageous to the entire organisation.

Use your moral judgment. Do this for the good of the organisation, not just
to further your own personal agenda.

2.4 Conclusion
Checklists will improve outcomes with no increase in skill [40]. Use them.
Checklists help you remember to make the right decisions. They support
you; they don’t control you.

In this chapter, you’ve seen an example of a simple checklist to use when
you start a new code base. You then read about the consequences of
instituting that checklist. A checklist can be simple, and yet have a big
effect.

You saw how to enable Git right away. That’s the simplest of the three items
on the checklist. When you consider how easy it is to take that step, though,
that small effort pays manifold.

You also saw how to automate the build. This, too, is easy to do when you
do it right away. Have a build script. Use it.

Finally, you saw how to turn compiler warnings into errors. You can also
use additional automated checks such as linters or static code analysis.
Given how easy it is to turn these features on, there’s little reason to pass
them by.

In the rest of the book, you’ll see the impact these early decisions have on
the code base as I add features.

Engineering is more than following a checklist, or automating what can be
automated, but those measures represent a step in the right direction.
They’re small improvements you can make today.

3 Tackling Complexity

Try to solve the following simple puzzle by listening to your intuition; don’t
try to solve it with mathematics or calculation.

A baseball bat and ball costs $1.10. The bat costs a dollar more than the
ball. How much does the ball cost?

Take note of your immediate response.

This seems like an easy question. Since this is supposed to be a book about
engineering, an intellectually demanding discipline, you probably suspect a
trap.

We’ll return to the bat and ball shortly.

This chapter takes a step back and attempts to answer a fundamental
question: Why is software development so difficult?

The answer that it proposes is equally fundamental. It has to do with how
the human brain works. This is the central thesis of the entire book. Before
discussing how to write code that fits in your head, we must discuss what
does fit in your head.

Subsequent chapters then put this knowledge into practice.

3.1 Purpose
After reading the first two chapters, you may be underwhelmed. Perhaps
you thought that software engineering was going to be a cerebral,
sophisticated, arcane, and esoteric discipline. We can easily make it more
sophisticated than what you’ve seen so far, but we have to start somewhere.
Why not start with the easy parts? As figure 3.1 alludes, climbing a hill
starts at ground level.

Figure 3.1 Climbing a hill starts at ground level.

Before we continue I think that we should pause and discuss the
problem that we’re trying to address. Which problem is that?

The problem that this book is trying to solve is one of sustainability. Not in
the usual, environmental, sense of the word, but suggesting that code can
sustain the organisation that owns it.

3.1.1 Sustainability
An organisation creates software for various reasons. Often, it’s to make
money. Sometimes, it’s to save money. Once in a while, governments
institute software projects to supply digital infrastructure for its citizens;

there are no direct profits or savings to be gained from the software, but
there’s a mission to fulfil.

It often takes a long time to develop a complex piece of software—months,
if not years.

Much software lives for years or decades. During its lifetime, it undergoes
changes, gets new features, bugs are fixed, and so on. This requires regular
work on the code base.

The software exists to support the organisation in some way or other. When
you add new features, or address defects, you support the organisation. It’s
best served if you can support it as well today as you could half a year ago.
And when you can support it as well in another half year.

This is a continual effort. It must be sustainable.

As Martin Fowler explains: without an eye to internal quality, you soon lose
the ability to make improvements in reasonable time.

“This is what happens with poor internal quality. Progress is rapid initially, but as time goes on it
gets harder to add new features. Even small changes require programmers to understand large
areas of code, code that’s difficult to understand. When they make changes, unexpected breakages
occur, leading to long test times and defects that need to be fixed.” [32]

This is the situation I believe that software engineering should address. It
should make the software development process more regular. It should
sustain its organisation. For months and years and decades.

Software engineering should make the software development
process more regular. It should sustain its organisation.

3.1.2 Value
Software exists to serve a purpose. It should provide value. I often run into
software professionals who seem blinded by that word. If the code you

wrote doesn’t provide value, then why did you write it?

A certain focus on value seems warranted. I’ve also met more than one
programmer who, if left to him- or herself, will while away hours dilly-
dallying with some clever framework of their own devising.

This happens to commercial companies as well. Richard P. Gabriel tells the
story of the rise and fall of a company called Lucid [38]. While they were
tinkering with the perfect commercial implementation of Common Lisp,
C++ came along and took over the market for cross-platform software
development languages.

The Lucid people considered C++ inferior to Common Lisp, but Gabriel
ultimately came to understand why customers chose it. C++ may be less
consistent and more complicated, but it worked and was available to
customers. Lucid’s product wasn’t. This lead Gabriel to formulate the
aphorism that worse is better. Lucid went out of business.

People who tinker with technology without regard for its purpose occupy
the right-hand side of figure 3.2.

Figure 3.2 Some programmers never consider the value of the code
they write, while others have difficulty seeing past immediately
quantifiable results. Sustainability lies somewhere in-between.

The focus on value seems to be a reaction to this mindset. It makes sense to
ask whether code serves a purpose. The term value is often used as a proxy
for purpose, despite the fact that you can’t measure it. There’s a school of
project management based on the idea [88] that you should:

1. form a hypothesis about the impact of the change you’re about to make

2. make the change

3. measure the impact and compare it to your prediction

This isn’t a book about project management, but that seems a reasonable
approach. It fits the observations of Accelerate [29].

The notion that code should produce value unfortunately leads to the logical
fallacy that code not producing value is prohibited. The notion that worse is
better isn’t far off.

This is a fallacy because some code produces no immediately measurable
value. You might, on the other hand, be able to measure the absence of it. A
straightforward example is security. You may not be able to measure the
value of adding authentication to an online system, but you can probably
measure the absence of it.

The same goes for Fowler’s argument about internal quality [32]. A lack of
architecture is going to be measurable, but only when it’s too late. I’ve seen
more than one company go out of business because of poor internal quality.

Sustainability occupies the middle ground in figure 3.2. It discourages
technology for technology’s sake, but it also advises against a myopic focus
on value.

Software engineering ought to encourage sustainability. By following
checklists, by treating warnings as errors, et cetera, you prevent some cruft
[32] from forming. None of the methodologies and heuristics presented in
this book guarantee a perfect result, but they pull in the right direction.
You’ll still have to use your experience and judgment. This is, after all, the
art of software engineering.

3.2 Why Programming Is Difficult
What makes software development so hard? There’s more than one reason.
One is, as discussed in section 1.1, that we’re using the wrong metaphors.
That clouds our thinking, but that’s not the only reason.

Another problem is that a computer is quantitatively different from a brain.
Yes, that’s another problematic metaphor.

3.2.1 The Brain Metaphor
It seems obvious to liken a computer to a brain, and vice versa. Surely, there
are superficial similarities. Both can perform calculations. Both can recall
events that happened in the past. Both can store and retrieve information.

Is the brain like a computer? Don’t be misled by the obvious
similarities.

Is a computer like a brain? I think that there are more differences than
similarities. A computer can’t make intuitive inferences. It doesn’t interpret
sight and sound well1. It doesn’t have intrinsic motivation.

1. So-called AI has made advances in recent years, but the problems researchers are struggling with
are still at a level that a toddler can easily solve. Show a computer a children’s book with drawings
of farm animals and ask it what’s in each picture.

Is a brain like a computer? Compared to a computer, our ability to calculate
is glacially slow, and our memory is so unreliable as to be disreputable. We
forget important things. Memories can be fabricated or manipulated [109],

and you’re not even aware that this happens. You’re certain that you were at
a particular party twenty years ago with your best friend, but she’s sure she
never went. Either your memory is wrong, or hers is.

What about working memory? A computer can keep track of millions of
things in RAM. Human short-term memory can hold from four to seven2

pieces of information [80][109].

2. You may also have encountered the magical number seven, plus or minus two. I don’t consider the
exact number important. What I do find crucial is that it’s orders of magnitude less than a
computer’s working memory.

This has profound implications for programming. Even a modest subroutine
can easily create dozens of variables and branching instructions. When you
try to understand what source code does, you’re essentially running an
emulator of the programming language in your mind. If too many things are
going on, you can’t keep track of it all.

How much is too much?

This book uses the number seven as a token for the limit of the brain’s
short-term memory. You may be able to keep track of nine things from time
to time, but seven represents the concept well.

3.2.2 Code Is Read More Than It’s Written
This brings us to a fundamental problem of programming.

You spend more time reading code than writing it.

You write a line of code once and read it multiple times [61]. You rarely get
to work with a pristine code base. When you work with an existing code
base, you must understand it before you can successfully edit it. When you
add a new feature, you read the existing code to figure out how to best reuse
what’s already there and to learn what new code you’ll have to add. When

you struggle to fix a bug, you must first understand what causes it. You’ll
typically spend the majority of your programming time reading existing
code.

Optimise code for readability.

You constantly hear about new programming languages, new libraries, new
frameworks, or new IDE features that enable you to produce more code
faster. As the Lucid story shows, it sells well, but is hardly a good strategy
for sustainable software development. More code faster means more code
that you’ll have to read. The more you produce, the more you have to read.
Automated code generation only makes matters worse.

As Martin Fowler writes about low code quality:

“Even small changes require programmers to understand large areas of code, code that’s difficult
to understand.” [32]

Code that’s difficult to understand slows you down. On the other hand,
every minute you invest in making the code easier to understand pays itself
back tenfold.

3.2.3 Readability
It’s easy to say that you should favour readable code over code that’s easy
to write, but what, exactly, is readable code?

Have you ever looked at some code and asked yourself: Who wrote this
crap?! Then, once you investigate3 it turns out that it was you?

3. git blame is a great tool for such forensics.

This happens to everyone. When you’re writing code, you’re in a situation
where you’re aware of all the context that gives rise to the code. When
you’re reading code, all that contextual information is gone.

Ultimately, the code is the only artefact that matters. Documentation may be
out of date, or absent. The person who wrote the code may be on vacation,
or may have left the organisation.

To add insult to injury, the brain performs poorly when reading and
evaluating formal statements. How did you respond to the baseball-bat-and-
ball question at the beginning of this chapter?

The number that immediately jumped into your head was 10. That’s the
answer that most people give [51].

It’s the wrong answer. If the ball costs 10 cents then the bat must cost $1.10,
and the total price would be $1.20. The correct answer is 5 cents.

The point is that we make mistakes all the time. When we solve trivial
maths problems, and when we read code.

How do you write readable code? You can’t trust your intuition. You’ll need
something more actionable. Heuristics, checklists... software engineering.
We’ll return to this topic throughout the book.

3.2.4 Intellectual Work
Have you ever driven your car somewhere, and after ten minutes of driving,
you suddenly ‘wake up’ and horrified ask yourself: How did I get here?

I have. Not that I’ve literally fallen asleep behind the wheel, but I’ve been
so lost in thought that I’ve been oblivious that I was driving. I’ve also
accomplished the feat of bicycling past my own home, as well as trying to
unlock the door to my downstairs neighbour instead of my own.

Based on these confessions I realise that you probably don’t want to get into
a car with me, but my point isn’t that I’m easily distracted. The point is that
the brain works even when you aren’t aware of it.

You know that your brain controls your breathing, even when you aren’t
thinking of it. It takes care of a lot of motor functions without your explicit

control. It seems that it does much more than that.

After one of the incidents where I’d found myself behind the wheel of my
car, wondering how I got where I was, I was as astounded as I was appalled.
I’d been driving in my home city of Copenhagen, and I must have
performed a series of complex manoeuvres to get where I was. Stopping for
red, turning left, turning right without hitting any of the city’s omnipresent
bicyclists, correctly navigating to my destination. Yet I had no recollection
of doing any of that.

Your conscious awareness isn’t a required ingredient for complex
intellectual work.

Have you ever been in the zone while programming? Looking up from the
screen and realising that it’s suddenly dark outside and that you’ve been at
it for hours? In psychology, this mental state is called flow [51]. In it, you’re
so fully engrossed in your activity that you lose awareness of the self.

You can program without deliberate thinking. Of course, you can also write
code while being aware that you’re doing it. The point is that a lot goes on
in your brain that you’re not explicitly aware of. Your brain performs the
work; your consciousness may be nothing but a passive spectator.

You’d think that intellectual work would be one hundred percent deliberate
thinking, but the truth is probably that a lot of involuntary activity also
takes place. Psychologist and Nobel laureate Daniel Kahneman suggests a
model of thought comprising two systems: System 1 and System 2.

“System 1 operates automatically and quickly, with little or no effort and no sense of voluntary
control.

System 2 allocates attention to the effortful mental activities that demand it, including complex
computations. The operations of System 2 are often associated with the subjective experience of
agency, choice, and concentration.” [51]

You probably think of programming as belonging exclusively to the realm
of System 2, but that doesn’t have to be the case. It seems that System 1 is
always running in the background, trying to make sense of the code it’s
looking at. The problems is that System 1 is fast, but not particularly
accurate. It can easily make incorrect inferences. That’s what’s happening

when 10 is the first number that comes to your mind when confronted with
the baseball-bat-and-ball puzzle.

In order to organise source code such that our brains can make sense of it,
you have to keep System 1 from going off the rails. Kahneman also writes:

“An essential design feature [of System 1] is that it represents only activated ideas. Information
not retrieved (even unconsciously) from memory might as well not exist. System 1 excels at
constructing the best possible story that incorporates ideas currently activated, but it does not
(cannot) allow for information it does not have.

The measure of success for System 1 is the coherence of the story it manages to create. The amount
and quality of the data on which the story is based are largely irrelevant. When information is
scarce, which is a common occurrence, System 1 operates as a machine for jumping to
conclusions.” [51]

There’s a machine for jumping to conclusions in your brain4, and it’s
looking at your code. You’d better organise code so that the relevant
information is activated. As Kahneman puts it, what you see is all there is
(WYSIATI) [51].

4. Why is System 1 running all the time, while System 2 may not be? One reason could be that
effortful thinking burns more glucose [51]. That would imply that System 1 is an energy-saving
mechanism.

This already goes a long way explaining why global variables and hidden
side effects make code obscure. A global variable is typically not visible
when you look at a piece of code. Even if your System 2 knows about it,
that knowledge is not activated, so System 1 doesn’t take it into account.

Place related code close together. All the dependencies, variables, and
decisions required should be visible at the same time. This is a theme that
runs throughout the book, so you’ll see plenty of examples, particularly in
chapter 7.

3.3 Towards Software Engineering
The purpose of software engineering should be to support the organisation
that owns the software. You should be able to make changes at a sustainable
pace.

But writing code is difficult because it’s so intangible. You spend more time
reading code than writing it, and the brain is easily misled—even by
unremarkable matters like the bat-and-ball problem.

Software engineering must address this problem.

3.3.1 Relationship to Computer Science
Can computer science help? I don’t see why not, but computer science isn’t
(software) engineering, just like physics isn’t the same as mechanical
engineering.

Such disciplines can interact, but they aren’t the same. Successful practices
can provide inspiration and insight for scientists, and results from science
can be applied to engineering, as suggested by figure 3.3.

Figure 3.3 Science and engineering interact, but aren’t the same.

For example, results from computer science can be encapsulated in reusable
packages.

I had a couple of years of professional experience with software
development before I learned about sorting algorithms. I don’t have a
formal education in computer science; I taught myself to code. If I needed
to sort an array in C++, Visual Basic, or VBScript, I’d call a method.

You don’t have to be able to implement quicksort or merge sort to sort
collections. You don’t have to know about hash indexes, SSTables, LSM-
trees, and B-trees to query a database5.

5. These are some of the data structures that power databases [55].

Computer science helps the software development industry to progress, but
the knowledge gained there can often be packaged into reusable software. It
doesn’t hurt to know about computer science, but you don’t have to. You
can still do software engineering.

3.3.2 Humane Code
Sorting algorithms can be encapsulated and distributed as reusable libraries.
Sophisticated storage and retrieval data structures can be packaged as
general-purpose database software, or offered as cloud-based infrastructure.

You still have to write code.

You have to organise it in a sustainable manner. You must structure it in
such a way that it fits in your brain.

As Martin Fowler put it:

“Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.” [34]

The brain comes with cognitive constraints that are completely different
from a computer’s limits. A computer can keep track of millions of things
in RAM. Your brain can keep track of seven.

A computer will only make decisions based on the information it’s
instructed to consult. Your brain tends to jump to conclusions. What you see
is all there is.

Obviously, you must write code such that the resulting software works as
desired. That’s no longer the main problem of software engineering. The
challenge is to organise it so that it fits in your brain. Code must be humane.

This implies writing small, self-contained functions. Throughout this book,
I’ll use the number seven as a proxy for the limits of human short-term
memory. Humane code, then, implies fewer than seven dependencies, that
cyclomatic complexity is at most seven, and so on.

The devil’s in the details, though, so I’ll show you plenty of examples.

3.4 Conclusion
The core problem that software engineering should solve is that it’s so
complex that it doesn’t fit the human brain. Fred Brooks offered this
analysis in 1986:

“Many of the classical problems of developing software products derive from this essential
complexity and its nonlinear increases with size [...] From the complexity comes the difficulty of
enumerating, much less understanding, all the possible states of the program” [14]

I use the term complexity in the same way that Rich Hickey uses it [45]: as
an antonym to simplicity. Complex means ‘assembled from parts’, as
opposed to simple, which implies unity.

The human brain can deal with limited complexity. Our short-term memory
can only keep track of seven objects. If we don’t pay attention, we can
easily write code that handles more than seven things at once. The computer
doesn’t care, so it’s not going to stop us.

Software engineering should be the deliberate process of preventing
complexity from growing.

Perhaps you recoil from all of this. You may think that it’s going to slow
you down.

Yes, that’s the point. To paraphrase J.B. Rainsberger [86], you probably
need slowing down. The faster you type, the more code you make that
everyone has to maintain. Code isn’t an asset; it’s a liability [77].

As Martin Fowler argues, it’s by applying good architecture that you can
keep a sustainable pace [32]. Software engineering is a means to that end.
It’s an attempt to shift software development from being a pure art towards
being a methodology.

4 Vertical Slice

Some years ago, a regular client of mine asked me to come help with a
project. When I arrived, I learned that a team had been working on a task
for about half a year without getting anywhere.

Their task was indeed daunting, but they were stuck in Analysis Paralysis
[15]. There were so many requirements that the team couldn’t figure out
how to address them all. I’ve seen this happen more than once, with
different teams.

Sometimes, the best strategy is to just get started. You should still think and
plan ahead. There’s no reason to be wilfully nonchalant or blasé about
thinking ahead, but just as too little planning can be bad for you, so can too
much. If you’ve already established your deployment pipeline [49], the
sooner you can deploy a piece of working software, no matter how trivial,
the sooner you can start to collect feedback from stakeholders [29].

Start by creating and deploying a vertical slice of the application.

4.1 Start with Working Software
How do you know that software works? Ultimately, you don’t know until
you’ve shipped it. Once it’s deployed or installed, and being used by real
users, you may be able to verify whether or not it works. That’s not even the
final assessment. The software that you’ve developed may work as you
intended it to work, while not solving users’ actual problems. How to
address that problem is beyond the scope of the book, so I’ll leave it at
that1.Iinterpret software engineering as a methodology to make sure that the
software works as intended, and that it stays that way.

1. The Lean Startup [88] and Accelerate [29] are good starting points if you need to explore that
topic.

The idea behind vertical slicing is to get to working software as soon as
possible. You do that by implementing the simplest feature you can think of
—all the way from user interface to data store.

4.1.1 From Data Ingress to Data Persistence
Most software comes with two types of boundaries to the wider world.
You’ve probably seen diagrams similar to figure 4.1 before. Data arrives at
the top. The application may subject the input to various transformations,
and may ultimately decide to save it.

Even a read operation can be considered input, although it doesn’t result in
data being saved. A query typically comes with query parameters that
identify the data being requested. The software still transforms those input
values to an interaction with its data store.

Sometimes, the data store is a dedicated database. At other times, it’s just
another system. It could be an HTTP-based service somewhere on the
internet, a message queue, the file system, or even just the local computer’s
standard output stream.

Such downstream targets can be write-only systems (e.g. the standard
output stream), read-only systems (e.g. a third-party HTTP API), or read-
write systems (e.g. the file system or databases).

Figure 4.1 Typical architecture diagram. Data arrives at the top, flows
through the application (the box), and is persisted at the bottom (in the
can).

Thus, at a sufficiently high level of abstraction, the diagram in figure 4.1
describes most software, from web sites to command-line utilities.

4.1.2 Minimal Vertical Slice

You can organise code in various ways. A conventional architecture is to
organise constituent elements into layers [33][26][50][60]. You don’t have
to do it like that, but the context of layered application architecture helps
explain why it’s called a vertical slice.

You don’t have to organise your code in layers. This section only
discusses layered architecture to explain why it’s called a vertical
slice.

As figure 4.2 shows, layers are typically illustrated as horizontal strata, with
data arriving on top and being persisted at the bottom. In order to
implement a complete feature, you’ll have to move data all the way from
entry point to persistence layer, or the other way. When layers are
horizontal shapes, then a single feature is a vertical slice through all of
them.

Figure 4.2 A vertical slice through the horizontal layers of a
stereotypical application architecture.

Regardless of whether you organise your code in layers or in another way,
implementing an end-to-end feature has at least two benefits:

1. It gives you early feedback about the entire life cycle of your software
development process.

2. It’s working software. It might already be useful to someone.

I’ve met programmers who spent months perfecting a home-grown data-
access framework before even trying to use it to implement a feature. They
often learn that they’ve made assumptions about usage patterns that don’t
fit reality. You should avoid Speculative Generality [34], the tendency to
add features to code because you ‘might need it later’. Instead, implement
features with the simplest possible code, but look out for duplication as you
add more.

Implementing a vertical slice is an effective way to learn what sort of code
you need, and what you can do without.

4.2 Walking Skeleton
Find a motivation for making changes to the code. Such motivation acts as
a driver of the change, so to speak.

You’ve already seen examples of such drivers. When you treat warnings as
errors, when you turn on linters and other static code analysers, you
introduce extrinsic motivations for changing the code. This can be
beneficial because it removes a degree of subjective judgement.

Using drivers of change gives rise to a whole family of x-driven software
development methodologies:

1. Test-driven development [9] (TDD)

2. Behaviour-driven development (BDD)

3. Domain-driven design [26] (DDD)

4. Type-driven development

5. Property-driven development2

2. See subsection 15.3.1 for an example of property-based testing.

Recall the bat-and-ball-problem from chapter 3. It demonstrates how easy it
is to make mistakes. Using an extrinsic driver works a bit like double-entry
bookkeeping [63]. You somehow interact with the driver, and it induces you
to modify the code.

While the driver can be a linter, it can also be code, in the form of
automated tests. I often follow an outside-in style of test-driven
development. This is a technique where the first tests you write exercise the
high-level boundary of the system under test. From there, you can work
your way from the outside in by adding tests of more fine-grained
implementation details, as needed. You’ll find a more detailed explanation,
including an example, in section 4.3.

You’re going to need a test suite.

4.2.1 Characterisation Test
In the rest of this chapter, I’m going to show you how to add a vertical slice
to the restaurant reservation HTTP API I began developing in subsection
2.2.2. Right now, it only serves the plain text Hello World!

If you add a simple automated test of the system, you’re on track to
enabling test-driven development. You’ll have a thin slice of functionality
that you can automatically test and deploy: a Walking Skeleton [36].

Follow the new-code-base checklist introduced in section 2.2 when adding a
unit test project to the Visual Studio solution: add the new test project to
Git, treat warnings as errors, and make sure that the automated build runs
the test.

Once you’ve done that, add your first test case, like listing 4.1.

Listing 4.1 Integration test of the HTTP home resource.
(Restaurant/3ee0733/Restaurant.RestApi.Tests/HomeTests.cs)
Click here to view code image

[Fact]

public async Task HomeIsOk()

{

 using var factory = new WebApplicationFactory<Startup>();

 var client = factory.CreateClient();

 var response = await client

 .GetAsync(new Uri("", UriKind.Relative))

 .ConfigureAwait(false);

 Assert.True(

 response.IsSuccessStatusCode,

 $"Actual status code: {response.StatusCode}.");

}

To be clear, I wrote this test after the fact, so I didn’t follow test-driven
development. Rather, this type of test is called a Characterisation Test [27]
because it characterises (i.e. describes) the behaviour of existing software.

I did this because the software already exists. You may recall from chapter
2 that I used a wizard to generate the initial code. Right now it works as
intended, but how do we know that it’ll keep working?

I find it prudent to add automated tests to protect against regressions.

The test shown in listing 4.1 uses the xUnit.net unit testing framework. This
is the framework I’ll use throughout the book. Even if you’re not familiar
with it, it should be easy to follow the examples, as it follows well-known
patterns for unit testing [66].

It uses the test-specific WebApplicationFactory<T> class to create a self-
hosted instance of the HTTP application. The Startup class (shown in
listing 2.5) defines and bootstraps the application itself.

Notice that the assertion only considers the most superficial property of the
system: does it respond with an HTTP status code in the 200 range (e.g. 200
OK or 201 Created)? I decided to refrain from verifying anything stronger
than that, because the current behaviour (it returns Hello World!)only acts
as a placeholder. It should change in the future.

When only asserting that a Boolean expression is true, the only message
you’ll get from the assertion library is that true was expected, but the
actual value was false. That’s hardly illuminating, so it may prove helpful
to provide a bit of extra context. I did that here by using the overload to
Assert.True that takes an additional message as its second argument.

I find the test too verbose as presented, but it compiles and the test passes.
We’ll improve the test code in a moment, but first, keep the new-code-base
checklist in mind. Did I do anything that the build script should automate?
Yes, indeed, I added a test suite. Change the build script to run the tests.
Listing 4.2 shows how I did that.

Listing 4.2 Build script with tests. (Restaurant/3ee0733/build.sh)
Click here to view code image

#!/usr/bin/env bash

dotnet test --configuration Release

Compared to listing 2.3, the only change is that it calls dotnet test instead
of dotnet build.

Remember to follow the checklist. Commit the changes to Git.

4.2.2 Arrange Act Assert
There’s structure to the test in listing 4.1. It starts with two lines followed
by a blank line, then a single statement spanning three lines followed by a
blank line, and finally another single statement spanning three lines.

Most of that structure is the result of deliberate methodology. For now, I’ll
skip the reason that some statements span multiple lines. You can read
about that in subsection 7.1.3.

The blank lines, on the other hand, are there because the code follows the
Arrange Act Assert pattern [9], also known as the AAA pattern. The idea is
to organise a unit test into three phases.

1. In the arrange phase you prepare everything required for the test.

2. In the act phase you invoke the operation you’d like to test.

3. In the assert phase you verify that the actual outcome matches the
expected outcome.

You can turn that pattern into a heuristic. I usually indicate the three phases
by separating them with a blank line. That’s what I’ve done in listing 4.1.

This only works if you can avoid additional blank lines in the test. A
common problem is when the arrange section grows so big that you get the
urge to apply some formatting by adding blank lines. If you do that, you’ll
have more than two blank lines in your test, and it’s unclear which of them
delineate the three phases.

In general, consider it a code smell [34] when test code grows too big. I like
it best when the three phases balance. The act section is typically the
smallest, but if you imagine that you rotate the code 90° as shown in figure
4.3,you should be able to balance the code approximately on the act section.

If the test code is so big that you must add additional blank lines, you’ll
have to resort to code comments to identify the three phases [92], but try to
avoid this.

At the other extreme, you may occasionally write a miniscule test. If you
only have three lines of code, and if each line belongs to each of the
different AAA phases, you can dispense with the blank lines; similarly if
you have only one or two lines of code. The purpose of the AAA pattern is
to make a test more readable by the addition of a well-known structure. If

you only have two or three lines of code, odds are that the test is so small
that it’s already readable as is.

4.2.3 Moderation of Static Analysis
While listing 4.1 is only a few lines of code, I still consider it too verbose.
Particularly the act section could be more readable. There are two
problems:

1. The call to ConfigureAwait adds what seems like redundant noise.

2. That’s quite a convoluted way to pass an empty string as an argument.

Let’s address each in turn.

Figure 4.3 Imagine that you rotate your test code 90°. (Code shown
here is illustrative and represents any unit test code block.) If you can
position it approximately on its act phase, then it’s in balance.

If ConfigureAwait is redundant, then why is it there? It’s there because
otherwise the code doesn’t compile. I’ve configured the test project
according to the new-code-base checklist, which includes adding static code
analysis and turning all warnings into errors.

One of these rules3 recommends calling ConfigureAwait on awaited tasks.
The rule comes with documentation that explains the motivation. In short,
by default a task resumes on the thread that originally created it. By calling
ConfigureAwait(false) you indicate that the task can instead resume on
any thread. This can avoid deadlocks and certain performance issues. The

rule strongly suggests to call this method in code that implements a reusable
library.

3. CA2007: Do not directly await a Task.

A test library, however, isn’t a generally reusable library. The clients are
known in advance: two or three standard test runners, including the built-in
Visual Studio test runner, and the one used by your Continuous Integration
server.

The documentation for the rule also contains a section on when it’s safe to
deactivate the rule. A unit testing library fits the description, so you can turn
it off to remove the noise from your tests.

Be aware that while it’s fine to turn off this particular rule for unit tests, it
should remain in effect for production code. Listing 4.3 shows the
Characterisation Test after clean-up.

Another issue with listing 4.1 is that the GetAsync method includes an
overload that takes a string instead of a Uri object. The test would be
more readable with "" instead of new Uri("", UriKind.Relative). Alas,
another static code analysis rule4 discourages use of that overload.

4. CA2234: Pass System.Uri objects instead of strings.

You should avoid ‘stringly typed’ [3] code5. Instead of passing strings
around, you should favour objects with good encapsulation. I salute that
design principle, so I have no intention to deactivate the rule, like I did with
the rule about ConfigureAwait.

5. Also known as Primitive Obsession [34].

I do believe, however, that we can make a principled exception from the
rule. As you may have noticed, you have to populate a Uri object with a
string.

The advantage of a Uri object over a string is that, at the receiving side,
you know that an encapsulated object carries stronger guarantees than a
string

does6. At the site where you create the object, there’s little difference.
Therefore, I think it’s fair to suppress the warning since the code contains a
string literal – not a variable.

6. Read more about guarantees and encapsulation in chapter 5.

Listing 4.3 Test with relaxed code analysis rules.
(Restaurant/d8167c3/Restaurant.RestApi.Tests/HomeTests.cs)
Click here to view code image

[Fact]

[SuppressMessage(

 "Usage", "CA2234:Pass system uri objects instead of

strings",

 Justification = "URL isn't passed as variable, but as

literal.")]

public async Task HomeIsOk()

{

 using var factory = new WebApplicationFactory<Startup>();

 var client = factory.CreateClient();

 var response = await client.GetAsync("");

 Assert.True(

 response.IsSuccessStatusCode,

 $"Actual status code: {response.StatusCode}.");

}

Listing 4.3 shows the result of suppressing the ConfigureAwait rule for all
tests, and the Uri rule for the specific test. Notice that the act section shrank
from three to one line of code. Most importantly, the code is easier to read.
The code I removed was (in this context) noise. Now it’s gone.

You can see that I suppressed the Uri recommendation by using an attribute
on the test method. Notice that I supplied a written Justification of my
decision. As I argued in chapter 3, the code is the only artefact that really
matters. Future readers may need to understand why the code is organised
as it is7.

7. You can typically reconstruct what changed from your Git history. It’s much harder to reconstruct
why things changed.

Documentation should prioritise explaining why a decision was
made, rather than what was decided.

As useful as static code analysis is, false positives come with the territory.
It’s okay to disable rules or suppress specific warnings, but don’t do this
lightly. At least, document why you decide to do it, and if possible, get
feedback on the decision.

4.3 Outside-in
Now we’re up to speed. There’s a system that responds to HTTP requests
(although it doesn’t do much) and there’s an automated test. That’s our
Walking Skeleton [36].

Figure 4.4 The plan is to create a vertical slice through the system that
receives a valid reservation and saves it in a database.

The system ought to do something useful. In this chapter, the goal is to
implement a vertical slice through the system from HTTP boundary to data
store. Recall from subsection 2.2.2 that the system should be a simple
online restaurant reservation system. I think a good candidate for a slice is
the ability to receive a valid reservation and save it in a database. Figure 4.4
illustrates the plan.

The system should be an HTTP API that receives and replies with JSON
documents. This is how the rest of the world interacts with the system.
That’s the contract with external clients, so it’s important that once you’ve
established it, you keep it.

How do you prevent regressions in the contract? One way is to write a set
of automated tests against the HTTP boundary. If you write the tests before
the implementation, then you have a driver for it.

Such a test can serve double duty as an automated acceptance test [49], so
you might call the process acceptance-test-driven development. I prefer to
call it outside-in test-driven development8, because while you begin at the
boundary, you can (and should) work your way in. You’ll see an example of
this soon.

8. I didn’t invent this term, but I don’t recall where I first heard it. The idea, however, I first
encountered in Growing Object-Oriented Software, Guided by Tests [36].

4.3.1 Receive JSON
When you’re beginning a new code base, there’s so much that has to be
done. It can be hard to move in small steps, but try, nonetheless. The
smallest change I can think of in the restaurant reservation example is to
verify that the response from the API is a JSON document.

We know that right now, it isn’t. At the moment, the web application just
returns the hard-coded string Hello World! as a plain-text document.

In good test-driven style, you could write a new test that asserts that the
response should be in JSON, but most of it would repeat the existing test
shown in listing 4.3. Instead of duplicating the test code, you can elaborate
on the existing test. Listing 4.4 shows the expanded test.

Listing 4.4 Test that asserts that the home resource returns JSON.
(Restaurant/316beab/Restaurant.RestApi.Tests/HomeTests.cs)
Click here to view code image

[Fact]

[SuppressMessage(

 "Usage", "CA2234:Pass system uri objects instead of

strings",

 Justification = "URL isn't passed as variable, but as

literal.")]

public async Task HomeReturnsJson()

{

 using var factory = new WebApplicationFactory<Startup>();

 var client = factory.CreateClient();

 using var request = new HttpRequestMessage(HttpMethod.Get,

"");

 request.Headers.Accept.ParseAdd("application/json");

 var response = await client.SendAsync(request);

 Assert.True(

 response.IsSuccessStatusCode,

 $"Actual status code: {response.StatusCode}.");

 Assert.Equal(

 "application/json",

 response.Content.Headers.ContentType?.MediaType);

}

Three things have changed:

1. I changed the name of the test to be more specific.

2. The test now explicitly sets the request’s Accept header to
application/json.

3. I added a second assertion.

By setting the Accept header, the client engages HTTP’s content
negotiation [2] protocol. If the server can serve a JSON response, it ought to
do so.

To verify that, I added a second assertion that examines the response’s
Content-Type

9.

9. You may have heard that a test should have only one assertion. You may also have heard that
having multiple assertions is called Assertion Roulette, and that it’s a code smell. Assertion

Roulette is, indeed, a code smell, but multiple assertions per test isn’t necessarily an example of it.
Assertion Roulette is either when you repeatedly interleave assert sections with additional arrange
and act code, or when an assertion lacks an informative assertion message [66].

The test now fails at the second assertion. It expects the Content-Type
header to be application/json, but it’s actually null. This is more like test-
driven development: write a failing test, then make it pass.

When working with ASP.NET you’re expected to follow the Model View
Controller [33] (MVC) pattern. Listing 4.5 shows the simplest Controller
implementation I could pull off.

Listing 4.5 First incarnation of HomeController.
(Restaurant/316beab/Restaurant.RestApi/HomeController.cs)
Click here to view code image

[Route("")]

public class HomeController : ControllerBase

{

 public IActionResult Get()

 {

 return Ok(new { message = "Hello, World!" });

 }

}

This, in itself, however, isn’t enough. You also have to tell ASP.NET to use
its MVC framework. You can do this in the Startup class, as shown in
listing 4.6.

Listing 4.6 Setting up ASP.NET for MVC.
(Restaurant/316beab/Restaurant.RestApi/Startup.cs)
Click here to view code image

public sealed class Startup

{

 public static void ConfigureServices(IServiceCollection

services)

 {

 services.AddControllers();

 }

 public static void Configure(

 IApplicationBuilder app,

 IWebHostEnvironment env)

 {

 if (env.IsDevelopment())

 app.UseDeveloperExceptionPage();

 app.UseRouting();

 app.UseEndpoints(endpoints => {

endpoints.MapControllers(); });

 }

}

Compared to listing 2.5 this looks simpler. I consider that an improvement.

With these changes, the test in listing 4.4 passes. Commit the changes to
Git, and consider pushing them through your deployment pipeline [49].

4.3.2 Post a Reservation
Recall that the purpose of a vertical slice is to demonstrate that the system
works. We’ve spent some time getting into position. That’s normal with a
new code base, but now it’s ready.

When picking a feature for the first vertical slice, I look for a few things.
You could call this a heuristic as well.

1. The feature should be simple to implement.

2. Prefer data input if possible.

When developing systems with persisted data, you quickly find that you
need some data in the system in order to test other things. Starting with a
feature that adds data to the system neatly addresses that concern.

In that light, it seems useful to enable the web application to receive and
save a restaurant reservation. Using outside-in test-driven development, you

could write a test like listing 4.7.

When pursuing a vertical slice, aim for the happy path [66]. For now, ignore
all the things that could go wrong10. The goal is to demonstrate that the
system has a specific capability. In this example, the desired capability is to
receive and save a reservation.

10. But if you think of any, write them down so you don’t forget about them [9].

Thus, listing 4.7 posts a valid reservation to the service. The reservation
should include a valid date, email, name, and quantity. The test uses an
anonymous type to emulate a JSON object. When serialised, the resulting
JSON has the same structure, and the same field names.

Listing 4.7 Testing that a valid reservation can be posted to the HTTP API.
The PostReservation method is in listing 4.8.
(Restaurant/90e4869/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Fact]

public async Task PostValidReservation()

{

 var response = await PostReservation(new {

 date = "2023-03-10 19:00",

 email = "katinka@example.com",

 name = "Katinka Ingabogovinanana",

 quantity = 2 });

 Assert.True(

 response.IsSuccessStatusCode,

 $"Actual status code: {response.StatusCode}.");

}

High-level tests should go easy on the assertions. During development,
many details will change. If you make the assertions too specific, you’ll
have to correct them often. Better to keep a light touch. The test in listing
4.7 only verifies that the HTTP status code represents success, as discussed
in section 4.2.1. As you add more test code, you’ll be describing the
expected behaviour of the system in increasing detail. Do this iteratively.

You may have noticed that the test delegates all the action to a method
called PostReservation. This is the Test Utility Method [66] shown in
listing 4.8.

Much of the code is similar to listing 4.4. I could have written it in the test
itself. Why didn’t I? There’s a couple of reasons, but this is where software
engineering is more art than science.

One reason is that I think it makes the test itself more readable. Only the
essentials are visible. You post some values to the service, the response
indicates success. This is a great example of an abstraction, according to
Robert C. Martin:

“Abstraction is the elimination of the irrelevant and the amplification of the essential” [60]

Listing 4.8 PostReservation helper method. This method is defined in the
test code base.
(Restaurant/90e4869/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[SuppressMessage(

 "Usage",

 "CA2234:Pass system uri objects instead of strings",

 Justification = "URL isn't passed as variable, but as

literal.")]

private async Task<HttpResponseMessage> PostReservation(

 object reservation)

{

 using var factory = new WebApplicationFactory<Startup>();

 var client = factory.CreateClient();

 string json = JsonSerializer.Serialize(reservation);

 using var content = new StringContent(json);

 content.Headers.ContentType.MediaType = "application/json";

 return await client.PostAsync("reservations", content);

}

Another reason I wanted to define a helper method is that I’d like to reserve
the right to change how this is done. Notice that the last line of code calls
PostAsync with the hard-coded relative path "reservations". This implies

that the reservations resource exists at a URL like
https://api.example.com /reservations. This might be the case, but
you may not want this to be part of your contract.

You can write an HTTP API with published URL templates, but it wouldn’t
be REST because it’s hard to change the API without breaking the contract
[2]. APIs that expect clients to use documented URL templates use HTTP
verbs, but not hypermedia controls11.

11. The Richardson Maturity Model for REST distinguishes between three levels: 1. Resources. 2.
HTTP verbs. 3. Hypermedia controls [114].

It’s too big a detour to insist on hypermedia controls (i.e. links) right now,
so in order to reserve the right to change things later, you can abstract the
service interaction in a SUT12 Encapsulation Method [66].

12. SUT: System Under Test.

The only other remark I’ll make about listing 4.8 is that I chose to suppress
the code analysis rule that suggests Uri objects, for the same reason as
explained in section 4.2.3.

When you run the test it fails as expected. The Assertion Message [66]is
Actual status code: NotFound. This means that the /reservations resource
doesn’t exist on the server. Hardly surprising, since we’ve yet to implement
it.

That’s straightforward to do, as listing 4.9 shows. It’s the minimal
implementation that passes all existing tests.

Listing 4.9 Minimal ReservationsController.
(Restaurant/90e4869/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

 [Route("[controller]")]

 public class ReservationsController

 {

#pragma warning disable CA1822 // Mark members as static

 public void Post() { }

#pragma warning restore CA1822 // Mark members as static

 }

The first detail that you see is the ugly #pragma instructions. As their
comments suggest, they suppress a static code analysis rule that insists on
making the Post method static. You can’t do that, though: if you make the
method static then the test fails. The ASP.NET MVC framework matches
HTTP requests with controller methods by convention, and methods must
be instance methods (i.e. not static).

There are multiple ways to suppress warnings from the .NET analysers and
I deliberately chose the ghastliest alternative. I did that instead of leaving a
//TODO comment. I hope those #pragma instructions have the same effect.

The Post method is currently a no-op, but it obviously shouldn’t stay like
that. You have to temporarily suppress the warning, though, because
otherwise the code doesn’t compile. Treating warnings as errors isn’t a free
ride, but I find the slowdown worthwhile. Remember: The goal isn’t to
write as many lines of code as fast as you can. The goal is sustainable
software.

The goal it not to write code fast. The goal is sustainable software.

All tests now pass. Commit the changes in Git, and consider pushing them
through your deployment pipeline [49].

4.3.3 Unit Test
As listing 4.9 shows, the web service doesn’t handle the posted reservation.
You can use another test to drive the behaviour closer to the goal, like the
test in listing 4.10.

Listing 4.10 Unit test of posting a valid reservation.
(Restaurant/bc1079a/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Fact]

public async Task PostValidReservationWhenDatabaseIsEmpty()

{

 var db = new FakeDatabase();

 var sut = new ReservationsController(db);

 var dto = new ReservationDto

 {

 At = "2023-11-24 19:00",

 Email = "juliad@example.net",

 Name = "Julia Domna",

 Quantity = 5

 };

 await sut.Post(dto);

 var expected = new Reservation(

 new DateTime(2023, 11, 24, 19, 0, 0),

 dto.Email,

 dto.Name,

 dto.Quantity);

 Assert.Contains(expected, db);

}

Unlike the previous tests you’ve seen, this isn’t a test against the system’s
HTTP API. It’s a unit test13. This illustrates the key idea behind outside-in
test-driven development. While you start at the boundary of the system, you
should work your way in.

13. The term unit test is ill-defined. There’s little consensus about its definition. I lean towards
defining it as an automated test that tests a unit in isolation of its dependencies. Note that this
definition is still vague, since it doesn’t define unit. I normally think of a unit as a small piece of
behaviour, but exactly how small is, again, ill-defined.

“But the boundary of the system is where the system interacts with the
outside world,” you object. “Shouldn’t we be testing its behaviour?”

That sounds appropriate, but is, unfortunately, impractical. Trying to cover
all behaviour and edge cases via boundary tests leads to a combinatorial

explosion. You’d have to write tens of thousands of tests to do this [85].
Going from testing the outside to testing units in isolation addresses that
problem.

While the unit test in listing 4.10 looks simple on the surface, much is going
on behind the scenes. It’s another example of an abstraction: amplify the
essentials and eliminate the irrelevant. Clearly, no code is irrelevant. The
point is that in order to understand the overall purpose of the test, you don’t
(yet) need to understand all the details of ReservationDto, Reservation, or
FakeDatabase.

The test is structured according to the Arrange Act Assert [9] heuristic [92].
A blank line separates each phase. The arrange phase creates a
FakeDatabase as well as the System Under Test (SUT) [66].

The act phase creates a Data Transfer Object (DTO) [33] and passes it to
the Post method. You could also have created the dto as part of the arrange
phase. I think you can argue for both alternatives, so I tend to go with what
balances best, as I described in section 4.2.2. In this case there are two
statements in each phase. I think that this 2-2-2 structure balances better
than the 3-1-2 shape that would result if you move initialisation of the dto
to the arrange phase.

Finally, the assert phase verifies that the database contains the expected
reservation.

This describes the overall flow of the test, as well as the reason that it’s
structured the way it is. Hopefully, the abstractions introduced here enabled
you to follow along even though you have yet to see the new classes.
Before consulting listing 4.11, imagine what ReservationDto looks like.

4.3.4 DTO and Domain Model
When you looked, were you surprised? It’s a completely normal C# DTO.
Its only responsibility is to mirror the structure of the incoming JSON
document and capture its constituent values.

Listing 4.11 Reservation DTO. This is part of the production code.
(Restaurant/bc1079a/Restaurant.RestApi/ReservationDto.cs)
Click here to view code image

public class ReservationDto

{

 public string? At { get; set; }

 public string? Email { get; set; }

 public string? Name { get; set; }

 public int Quantity { get; set; }

}

How do you think Reservation looks? Why does the code even contain
two classes with similar names? The reason is that while they both
represent a reservation, they play different roles.

The role of a DTO is to capture incoming data in a data structure, or to help
transform a data structure to output. You should use it for nothing else, as it
offers no encapsulation. Martin Fowler puts it this way:

“A Data Transfer Object is one of those objects our mothers told us never to write.” [33]

The purpose of the Reservation class, on the other hand, is to encapsulate
the business rules that apply to a reservation. It’s part of the code’s Domain
Model [33][26]. Listing 4.12 shows the initial version of it. While it looks
more complex14 than listing 4.11, it actually isn’t. It’s made from exactly
the same number of constituent parts.

14. Keep in mind that I use the word complex to mean assembled from parts [45]. It’s not a synonym
for complicated.

Listing 4.12 Reservation class. This is part of the Domain Model.
(Restaurant/bc1079a/Restaurant.RestApi/Reservation.cs)
Click here to view code image

public sealed class Reservation

{

 public Reservation(

 DateTime at,

 string email,

 string name,

 int quantity)

 {

 At = at;

 Email = email;

 Name = name;

 Quantity = quantity;

 }

 public DateTime At { get; }

 public string Email { get; }

 public string Name { get; }

 public int Quantity { get; }

 public override bool Equals(object? obj)

 {

 return obj is Reservation reservation &&

 At == reservation.At &&

 Email == reservation.Email &&

 Name == reservation.Name &&

 Quantity == reservation.Quantity;

}

 public override int GetHashCode()

 {

 return HashCode.Combine(At, Email, Name, Quantity);

 }

}

“But there’s so much more code there! Didn’t you cheat? Where are the
tests that drove you to this implementation?” you ask.

I wrote no tests of the Reservation class (apart from listing 4.10). I never
claimed that I’d stick strictly to test-driven development.

Earlier in this chapter I discussed how I don’t trust myself to write correct
code. Again, recall the bat-and-ball problem if you need a reminder of how
easily fooled the brain is. I do, however, trust a tool to write code for me.
While I’m not a big fan of auto-generated code, Visual Studio wrote most
of listing 4.12 for me.

I wrote the four read-only properties and then used Visual Studio’s generate
constructor tool to add the constructor, and the generate Equals and
GetHashCode tool for the rest. I trust that Microsoft tests the features they
include in their products.

How does Reservation better encapsulate the business rules about
reservations? For now, it barely does. The major difference is that, as
opposed to the DTO, the domain object requires all four constituent values
to be present15. In addition, the Date is declared as a DateTime, which
guarantees that the value is a proper date, and not just any arbitrary string.
If you aren’t yet convinced, section 5.3 and subsection 7.2.5 returns to the
Reservation class to make it more compelling.

15. Recall that the nullable reference types feature is enabled. The absence of question marks in the
property declarations indicate that none of them may be null. Contrast with listing 4.11, which
has question marks on all string properties, indicating that all may be null.

Why does Reservation look like a Value Object16? Because this offers a
number of advantages. You should prefer Value Objects for your Domain
Model [26]. It also makes testing easier [104].

16. A Value Object [33] is an immutable object that composes other values and makes them look like
a single, albeit complex, value. The archetypical example would be a Money class consisting of a
currency and an amount [33].

Consider the assertion in listing 4.10. It looks for expected in db. How did
expected get into db?Itdidn’t,butanobjectthat looks just like it did.
Assertions use objects’ own definitions of equality to compare expected and
actual values, and Reservation overrides Equals. You can only safely
implement such structural equality when the class is immutable. Otherwise,
you might compare two mutable objects and think they’re the same, only to
later see them diverge.

Structural equality makes elegant assertions possible [104]. In the test, just
create an object that represents the expected outcome, and compare it to the
actual result.

4.3.5 Fake Object

The final new class implied by listing 4.10 is FakeDatabase, shown in
listing 4.13. As its name implies, this is a Fake Object [66], a kind of Test
Double [66]17. It pretends that it’s a database.

17. You may know Test Doubles as mocks and stubs. Like the word unit test, there’s no consensus
about what these words actually mean. I try to avoid them for that reason. For what it’s worth, the
excellent book xUnit Test Patterns [66] offers clear definitions of those terms, but alas, no one
uses them.

Listing 4.13 Fake database. This is part of the test code.
(Restaurant/bc1079a/Restaurant.RestApi.Tests/FakeDatabase.cs)
Click here to view code image

[SuppressMessage(

 "Naming",

 "CA1710:Identifiers should have correct suffix",

 Justification = "The role of the class is a Test Double.")]

public class FakeDatabase :

 Collection<Reservation>, IReservationsRepository

{

 public Task Create(Reservation reservation)

 {

 Add(reservation);

 return Task.CompletedTask;

 }

}

It’s just an ordinary in-memory collection that implements an interface
called IReservationsRepository. Since it derives from
Collection<Reservation> it comes with various collection methods,
including Add. That’s also the reason that it works with Assert.Contains in
listing 4.10.

A Fake Object [66] is a test-specific object that nonetheless has proper
behaviour. When you use it as a stand-in for a real database, you can think
of it as a kind of in-memory database. It works well with state-based testing
[100]. That’s the kind of test shown in listing 4.10. In the assert phase, you
verify that the actual state fits the expected state. That particular test
considers the state of db.

4.3.6 Repository Interface
The FakeDatabase class implements the IReservationsRepository
interface shown in listing 4.14. This early in the lifetime of the code base,
the interface only defines a single method.

For now, I chose to name the interface after the Repository pattern [33],
although it only has a passing similarity to the original pattern description. I
did that because most people are familiar with the name and understand that
it models data access in some way. I may decide to rename it later.

Listing 4.14 Repository interface. This is part of the Domain Model.
(Restaurant/bc1079a/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(Reservation reservation);

}

4.3.7 Create in Repository
As you can see by the distance between this page and listing 4.10, that
single test sparked the creation of several new types. This is normal early in
the life of a code base. There’s almost no existing code, so even a simple
test is likely to set off a small avalanche of new code.

Based on the test, you also have to modify ReservationsController’s
constructor and Post method to support the interaction driven by the test.
The constructor must take an IReservationsRepository parameter, and the
Post method a ReservationDto parameter. Once you’ve made these
changes, the test finally compiles so that you can run it.

When you execute it, it fails, as it’s supposed to do.

To make it pass, you must add a Reservation object to the repository in the
Post method. Listing 4.15 shows how.

The ReservationsController uses Constructor Injection [25] to receive
the injected repository and save it as a read-only property for later use.
This means that in any properly initialised instance of the class, the Post
method can use it. Here, it calls Create with a hard-coded Reservation.
While this is obviously wrong, it passes the test. It’s the simplest18 thing
that could possibly work [22].

18. You might argue that it’d be just as simple to copy the values from dto. It’s true that this would
have the same cyclomatic complexity and the same number of lines of code, but in the spirit of
The Transformation Priority Premise [64] (TPP), I consider a constant to be simpler than a
variable. See subsection 5.1.1 for more details on the TPP.

Listing 4.15 Saving a reservation in the injected repository.
(Restaurant/bc1079a/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

[ApiController, Route("[controller]")]

public class ReservationsController

{

 public ReservationsController(IReservationsRepository

repository)

 {

 Repository = repository;

 }

 public IReservationsRepository Repository { get; }

 public async Task Post(ReservationDto dto)

 {

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 await Repository

 .Create(

 new Reservation(

 new DateTime(2023, 11, 24, 19, 0, 0),

 "juliad@example.net",

 "Julia Domna",

 5))

 .ConfigureAwait(false);

 }

}

If you’re wondering what drove the Guard Clause [7] against null into
existence, that was prompted by a static code analysis rule. Again, keep in
mind that you can use more than one driver at the same time: test-driven
development and analysers or linters. There’s lots of tooling that can drive
creation of code. In fact, I used Visual Studio’s add null check tool to add
the guard.

The code in listing 4.15 passes the test in listing 4.10, but now another test
fails!

4.3.8 Configure Dependencies
While the new test succeeds, the boundary test in listing 4.7 now fails
because ReservationsController no longer has a parameterless
constructor. The ASP.NET framework needs help creating instances of the
class, particularly because no classes in the production code implement the
required IReservationsRepository interface.

The simplest way to make all tests pass is to add a Null Object [118]
implementation of the interface. Listing 4.16 shows a temporary class
nested within the Startup class. It’s an implementation of
IReservationsRepository that doesn’t do anything.

Listing 4.16 Null Object implementation. This is a temporary, nested
private class. (Restaurant/bc1079a/Restaurant.RestApi/Startup.cs)
Click here to view code image

private class NullRepository : IReservationsRepository

{

 public) Task Create(Reservation reservation)

 {

 return Task.CompletedTask;

 }

}

If you register it with ASP.NET’s built-in Dependency Injection Container
[25] it’ll solve the problem. Listing 4.17 shows how to do that. Since
NullRepository is stateless, you can register a single object with the
Singleton lifetime [25], which means that the same object will be shared
between all threads during the process lifetime of the web service.

Listing 4.17 Register NullRepository with ASP.NET’s built-in DI
Container. (Restaurant/bc1079a/Restaurant.RestApi/Startup.cs)
Click here to view code image

public static void ConfigureServices(IServiceCollection

services

{

 services.AddControllers();

 services.AddSingleton<IReservationsRepository>(

 new NullRepository());

}

All tests now pass. Commit the changes in Git, and consider pushing them
through your deployment pipeline.

4.4 Complete the Slice
Pursuing the vertical slice, figure 4.5 implies that something is missing. You
need a proper implementation of IReservationsRepository to save the
reservation to persistent storage. Once you have that, you’ve completed the
slice.

Figure 4.5 Progress so far. Compare to the plan shown in figure 4.4.

“Wait a minute,” you say, “it doesn’t work at all! It’d just save a hard-coded
reservation! And what about input validation, logging, or security?”

We’ll get to all of this in time. Right now, I’ll be satisfied if a stimulus can
produce a persistent state change, even if that’s a hard-coded reservation.
It’ll still demonstrate that an external event (an HTTP POST) can modify the
state of the application.

4.4.1 Schema
How should we save the reservation? In a relational database? A graph
database [89]? A document database?

If you were to follow the spirit of Growing Object-Oriented Software,
Guided by Tests [36] (GOOS) you should pick the technology that best
supports test-driven development. Preferably something that you can host
within your automated tests. That suggests a document database.

Despite of this, I’ll pick a relational database—specifically, SQL Server. I
do this for educational reasons. First, GOOS [36] is already an excellent

resource if you want to learn principled outside-in test-driven development.
Second, in reality, relational databases are ubiquitous. Having a relational
database is often non-negotiable. Your organisation may have a support
agreement with a particular vendor. Your operations team may prefer a
specific system because they know how to maintain it, and do backups.
Your colleagues may be most comfortable with a certain database.

Despite the NoSQL movement, relational databases remain an unavoidable
part of enterprise software development. I hope that this book is more
useful because I include a relational database as part of the example. I’ll use
SQL Server because it’s an idiomatic part of the standard Microsoft stack,
but the techniques you’d have to apply wouldn’t change much if you chose
another database.

Listing 4.18 shows the initial schema for the Reservations table.

I prefer defining a database schema in SQL, since that’s the native language
of the database. If you instead prefer to use an object-relational mapper or a
domain-specific language then that’s fine too. The important part is that you
commit the database schema to the same Git repository that holds all the
other source code.

Listing 4.18 Database schema for the Reservations table.
(Restaurant/c82d82c/Restaurant.RestApi/RestaurantDbSchema.sql)
Click here to view code image

CREATE TABLE [dbo].[Reservations] (

 [Id] INT NOT NULL IDENTITY,

 [At] DATETIME2 NOT NULL,

 [Name] NVARCHAR (50) NOT NULL,

 [Email] NVARCHAR (50) NOT NULL,

 [Quantity] INT NOT NULL

 PRIMARY KEY CLUSTERED ([Id] ASC)

)

Commit database schema to the Git repository.

4.4.2 SQL Repository
Now that you know what the database schema looks like, you can
implement the IReservationsRepository interface against the database.
Listing 4.19 shows my implementation. As you can tell, I’m not a fan of
object-relational mappers (ORMs).

You may argue that using the fundamental ADO.NET API is verbose
compared to, say, Entity Framework, but keep in mind that you shouldn’t be
optimising for writing speed. When optimising for readability, you can still
argue that using an object-relational mapper would be more readable. I
think that there’s a degree of subjective judgement involved.

If you want to use an object-relational mapper instead, then do so. That’s
not the important point. The important point is that you keep your Domain
Model [33] unpolluted by implementation details19.

19. This is the Dependency Inversion Principle applied. Abstractions should not depend upon details.
Details should depend upon abstractions [60]. The abstraction in this context is the Domain
Model, that is, Reservation.

What I like about the implementation in listing 4.19 is that it has simple
invariants. It’s a stateless, thread-safe object. You can create a single
instance of it and reuse it during the lifetime of your application.

“But Mark,” you protest, “now you’re cheating again! You didn’t test-drive
that class.”

Listing 4.19 SQL Server implementation of the Repository interface.
(Restaurant/c82d82c/Restaurant.RestApi/SqlReservationsRepository.cs)
Click here to view code image

public class SqlReservationsRepository :

IReservationsRepository

{

 public SqlReservationsRepository(string connectionString)

 {

 ConnectionString = connectionString;

 }

 public string ConnectionString { get; }

 public async Task Create(Reservation reservation)

 {

 if (reservation is null)

 throw new

ArgumentNullException(nameof(reservation));

 using var conn = new SqlConnection(ConnectionString);

 using var cmd = new SqlCommand(createReservationSql,

conn);

 cmd.Parameters.Add(new SqlParameter("@At",

reservation.At));

 cmd.Parameters.Add(new SqlParameter("@Name",

reservation.Name));

 cmd.Parameters.Add(new SqlParameter("@Email",

reservation.Email));

 cmd.Parameters.Add(

 new SqlParameter("@Quantity",

reservation.Quantity));

 await conn.OpenAsync().ConfigureAwait(false);

 await cmd.ExecuteNonQueryAsync().ConfigureAwait(false);

 }

 private const string createReservationSql = @"

 INSERT INTO

 [dbo].[Reservations] ([At], [Name], [Email],

[Quantity])

 VALUES (@At, @Name, @Email, @Quantity)";

}

True, I didn’t do that because I consider SqlReservationsRepository a
Humble Object [66]. This is an implementation that’s hard to unit test
because it depends on a subsystem that you can’t easily automate. Instead,
you drain the object of branching logic and other kinds of behaviour that
tend to cause defects.

The only branching in SqlReservationsRepository is the null guard that
was driven by static code analysis and created by Visual Studio.

All that said, in section 12.2 you’ll see how to add automated tests that
involve the database.

4.4.3 Configuration with Database
Now that you have a proper implementation of IReservationsRepository
you have to tell ASP.NET about it. Listing 4.20 shows the changes you
need to make to the Startup class.

Listing 4.20 The parts of the Startup file that configure the application to
run against SQL Server.
(Restaurant/c82d82c/Restaurant.RestApi/Startup.cs)
Click here to view code image

public IConfiguration Configuration { get; }

public Startup(IConfiguration configuration)

{

 Configuration = configuration;

}

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllers();

 var connStr =

Configuration.GetConnectionString("Restaurant");

 services.AddSingleton<IReservationsRepository>(

 new SqlReservationsRepository(connStr));

}

You call AddSingleton with the new SqlReservationsRepository class
instead of the NullRepository class from listing 4.16. You can now delete
that class.

You can’t create a SqlReservationsRepository instance unless you supply
a connection string, so you must get that from the ASP.NET’s
configuration.

When you add a constructor to Startup, as shown in listing 4.20,the
framework automatically supplies an instance of IConfiguration.

You’ll have to configure the application with a proper connection string.
Among the many options available, you can use a configuration file. Listing
4.21 shows what I commit to Git at this point. While it’s helpful to your
colleagues to commit the structure of required configuration, don’t include
actual connection strings. They’re going to vary according to environments
and may contain secrets that shouldn’t be in your version control system.

Listing 4.21 Structure of connection string configuration. This is what you
should commit to Git. Be sure to avoid committing secrets.
(Restaurant/c82d82c/Restaurant.RestApi/appsettings.json)
Click here to view code image

{

 "ConnectionStrings": {

 "Restaurant": ""

 }

}

If you put a real connection string in the configuration file, the application
ought to work.

4.4.4 Perform a Smoke Test
How do you know that the software works? After all, we didn’t add an
automated systems test.

While you should favour automated tests, you shouldn’t forget manual
testing. Once in a while, turn the system on and see if it catches fire. This is
called a Smoke Test.

If you put a proper connection string in the configuration file and start the
system on your development machine, you can try to POST a reservation to
it. There’s a wide selection of tools available to interact with an HTTP API.
.NET developers tend to prefer GUI-based tools like Postman or Fiddler,

but do yourself a favour and learn to use something that’s easier to
automate. I often use cURL. Here’s an example (broken into multiple lines
to fit the page):

Click here to view code image

$ curl -v http://localhost:53568/reservations

 -H "Content-Type: application/json"

 -d "{ \"at\": \"2022-10-21 19:00\",

 \"email\": \"caravan@example.com\",

 \"name\": \"Cara van Palace\",

 \"quantity\": 3 }"

This posts a JSON reservation to the appropriate URL. If you look in the
database you configured the application to use, you should now see a row
with a reservation... for Julia Domna!

Recall that the system still saves a hard-coded reservation, but at least you
now know that if you supply a stimulus, something happens.

4.4.5 Boundary Test with Fake Database
The only remaining problem is that the boundary test in listing 4.7 now
fails. The Startup class configures the SqlReservationsRepository
service with a connection string, but there’s no connection string in the test
context. There’s also no database.

It’s possible to automate setting up and tearing down a database for
automated test purposes, but it’s cumbersome and slows down the tests.
Maybe later20, but not now.

20. In section 12.2,infact.

Instead, you can run the boundary test against the FakeDatabase shown in
listing 4.13. In order to do that, you must change how the test’s
WebApplicationFactory behaves. Listing 4.22 shows how to override its
ConfigureWebHost method.

http://localhost:53568/reservations

The code in the ConfigureServices block runs after the Startup class’
ConfigureServices method has executed. It finds all the services that
implement the IReservationsRepository interface (there’s only one) and
removes them. It then adds a FakeDatabase instance as a replacement.

Listing 4.22 How to replace a real dependency with a Fake for testing
purposes.
(Restaurant/c82d82c/Restaurant.RestApi.Tests/RestaurantApiFactory.cs)
Click here to view code image

public class RestaurantApiFactory :

WebApplicationFactory<Startup>

{

 protected override void ConfigureWebHost(IWebHostBuilder

builder)

 {

 if (builder is null)

 throw new ArgumentNullException(nameof(builder));

 builder.ConfigureServices(services =>

 {

 services.RemoveAll<IReservationsRepository>();

 services.AddSingleton<IReservationsRepository>(

 new FakeDatabase());

 });

 }

}

Youhavetousethenew RestaurantApiFactory class in your unit test, but
that’s just a change to a single line in the PostReservation helper method.
Compare listing 4.23 with listing 4.8.

Listing 4.23 Test helper method with updated web application factory. Only
the highlighted line that initialises the factory has changed compared to
listing 4.8.
(Restaurant/c82d82c/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[SuppressMessage(

 "Usage",

 "CA2234:Pass system uri objects instead of strings",

 Justification = "URL isn't passed as variable, but as

literal.")]

private async Task<HttpResponseMessage> PostReservation(

 object reservation)

{

 using var factory = new RestaurantApiFactory();

 var client = factory.CreateClient();

 string json = JsonSerializer.Serialize(reservation);

 using var content = new StringContent(json);

 content.Headers.ContentType.MediaType = "application/json";

 return await client.PostAsync("reservations", content);

}

Once more, all tests pass. Commit the changes in Git, and push them
through your deployment pipeline. Once the changes are in production,
perform another manual Smoke Test against the production system.

4.5 Conclusion
A thin vertical slice is an effective way to demonstrate that the software
may actually work. Combined with Continuous Delivery [49] you’re able to
quickly put working software in production.

You may think that the first vertical slice is so ‘thin’ that it’s pointless. The
example in this chapter showed how to save a reservation in a database, but
the values being saved aren’t the values supplied to the system. How does
that add any value?

Granted, it hardly does, but it establishes a running system, as well as a
deployment pipeline [49]. Now you can improve on it. Small
improvements, continuously delivered, inch closer towards a useful system.
Other stakeholders are better equipped to evaluate when the system
becomes useful. Your task is to enable them to perform that evaluation.

Deploy as often as you can, and let other stakeholders tell you when you’re
done.

5 Encapsulation

Have you ever bought something significant, like a house, a plot of land, a
company, or a car?

If so, you probably signed a contract. A contract stipulates a set of rights
and obligations on both sides. The seller promises to hand over the
property. The buyer commits to pay the specified amount at a prescribed
time. The seller may give some guarantees as to the state of the property.
The buyer may promise not to hold the seller liable for damages after the
transaction completes. And so on.

A contract introduces and formalises a level of trust that would otherwise
not be present. Why should you trust a stranger? It’s too risky to do that, but
the institution of a contract fills the gap.

That’s what encapsulation is about. How can you trust an object to behave
reasonably? By making objects engage in contracts.

5.1 Save the Data
Chapter 4 closed without resolving an unbearable tension. Listing 4.15
shows how the Post method saves a hard-coded reservation while it ignores
the data it received.

This is a defect. To fix it, you have to add some code, and that puts us in a
good position to start discussing encapsulation. Since this kills two birds
with one stone, let’s do that first.

5.1.1 The Transformation Priority Premise

Don’t forget to use a driver if you can. The hard-coded values in listing
4.15 were driven by a single test case. How can you improve the situation?

It’s tempting to just fix the code. After all, what has to happen is hardly
rocket science. When I coach teams, I constantly have to remind developers
to slow down. Write production code as answers to drivers like tests or
analysers. Moving forward in small steps reduces the risk of mistakes.

When you edit code, you transform it from one working state to another.
This doesn’t happen atomically. During modification, the code may not
compile. Keep the time when the code is invalid as short as possible, as
implied by figure 5.1. This reduces the number of things your brain has to
keep track of.

Figure 5.1 Editing code is the process of going from one working state
to another. Keep the time when the code is in transition (i.e. doesn’t
work) as short as possible.

In 2013 Robert C. Martin published a prioritised list of code
transformations [64]. While he only intended it as a preliminary suggestion,
I find it useful as a guideline. It goes like this:

({}→nil) no code at all → code that employs nil

(nil→constant)
(constant→constant+) a simple constant to a more complex constant

(constant→scalar) replacing a constant with a variable or an argument

(statement→statements) adding more unconditional statements

(unconditional→if) splitting the execution path

(scalar→array)
(array→container)

(statement→recursion)
(if→while)
(expression→function) replacing an expression with a function or
algorithm

(variable→assignment) replacing the value of a variable

The list is ordered roughly so that the simpler transformations are at the top,
and the more complex changes are at the bottom.

Don’t worry if some of the words seem cryptic or obscure. As with so many
other guidelines in this book, they’re food for thought rather than rigid
rules. The point is to move in small increments, for example by using a
hard-coded constant instead of null1, or by turning a singular value into an
array.

1. In the article [64] Robert C. Martin calls an undefined value nil, but from the context, it seems that
he means null. Some languages (e.g. Ruby) call null nil.

At the moment, the Post method saves a constant, but it ought to save data
from dto;asetof scalar values. Thisisthe constant→scalar transformation
(or a set of them).

The point with the Transformation Priority Premise is that we should aim to
make changes to our code using the small transformations from the list.

Since we’ve identified the change we’re aiming for as one of the warranted
changes, let’s go ahead and make it.

5.1.2 Parametrised Test
The idea behind the Transformation Priority Premise is that once you’ve
identified which transformation to aim for, you should write a test driving
that change.

You could write a new test method, but it’d be a duplicate of listing 4.10,
just with some different property values for the dto. Instead, turn the

existing test into a Parametrised Test [66].

Listing 5.1 Parametrised Test of posting a valid reservation. Compared to
listing 4.10, only the highlighted test case is new.
(Restaurant/4617450/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(

 "2023-11-24 19:00", "juliad@example.net", "Julia Domna",

5)]

[InlineData("2024-02-13 18:15", "x@example.com", "Xenia Ng",

9)]

public async Task PostValidReservationWhenDatabaseIsEmpty(

 string at,

 string email,

 string name,

 int quantity)

{

 var db = new FakeDatabase();

 var sut = new ReservationsController(db);

 var dto = new ReservationDto

 {

 At = at,

 Email = email,

 Name = name,

 Quantity = quantity

 };

 await sut.Post(dto);

 var expected = new Reservation(

 DateTime.Parse(dto.At, CultureInfo.InvariantCulture),

 dto.Email,

 dto.Name,

 dto.Quantity);

 Assert.Contains(expected, db); }

Listing 5.1 shows the change. Instead of the [Fact] attribute, it uses the
[Theory]

2 attribute to indicate a Parametrised Test, as well as two
[InlineData] attributes that supply the data. Notice that the top

[InlineData] attribute supplies the same test values as listing 4.10, while
the second attribute contains a new test case.

2. This is xUnit.net’s API for Parametrised Tests. Other frameworks provide that feature in similar or
not-so-similar ways. A few unit testing frameworks don’t support this at all. In my opinion, that’s
reason enough to find another framework. The ability to write Parametrised Tests is one of the
most important features of a unit testing framework.

One thing that should bother you is that the assertion phase of the test now
seems to duplicate what would essentially be the implementation code.
That’s clearly not perfect. You shouldn’t trust your brain to write production
code without some sort of double-entry bookkeeping, but that only works if
the two views are different. That’s not the case here.

Perfect, however, is the enemy of the good. While this change introduces a
problem in the test code, its purpose is to demonstrate that the Post method
doesn’t work. And indeed, when you run the test suite, the new test case
fails.

5.1.3 Copy DTO to Domain Model
Listing 5.2 shows the simplest transformation you can make to the Post
method to make all tests pass.

Listing 5.2 The Post method now saves the dto data.
(Restaurant/4617450/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 var r = new Reservation(

 DateTime.Parse(dto.At!, CultureInfo.InvariantCulture),

 dto.Email!,

 dto.Name!,

 dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

}

This seems like an improvement compared to listing 4.15, but there are still
issues that you ought to address. Fight the urge to make further
improvements right now. By adding the test case shown in listing 5.1,
you’ve driven a small transformation. While the code isn’t perfect, it’s
improved. All tests pass. Commit the changes to Git and push them through
your deployment pipeline.

If you’re wondering about the exclamation marks after dto.At,
dto.Email,and dto.Name, those are some of the remaining imperfections.

This code base uses C#’s nullable reference types feature, and most of the
dto properties are declared as nullable. Without the exclamation mark, the
compiler complains that the code accesses a nullable value without
checking for null. The ! operator suppresses the compiler’s complaints.
With the exclamation marks, the code compiles.

This is a terrible hack. While the code compiles, it could easily cause a
NullReferenceException at run time. Trading a compile-time error for a
run-time exception is a poor trade-off. We should do something about that.

Another potential run-time exception lurking in listing 5.2 is that there’s no
guarantee that the DateTime.Parse method call succeeds. We should do
something about that as well.

5.2 Validation
With the code in listing 5.2, what happens if a client posts a JSON
document without an at property?

You might think that Post would throw a NullReferenceException,butin
reality, DateTime.Parse throws an ArgumentNullException instead. At
least that method performs input validation. You should do the same.

How Is ArgumentNullException Better Than
NullReferenceException?

Does it matter which exception is thrown by a method? After all, if
you don’t handle it, your program will crash.

Exception types seem to matter most if you can handle them. If you
know that you can handle a particular type of exception, you can write
a try/catch block. The problem is all the exceptions that you can’t
handle.

Typically, NullReferenceException happens when a required object
is missing (null). If the object is required, but not available, there’s not
much that you can do about it. This is as true for
NullReferenceException as it is for ArgumentNullException, so
why bother to check for null only to throw an exception?

The difference is that a NullReferenceException carries no helpful
information in its exception message. You’re only told that some
object was null, but not which one.

An ArgumentNullException, on the other hand, carries information
about which argument was null.

If you encounter an exception message in a log or error report, which
would you rather like to see? A NullReferenceException with no
information, or an ArgumentNullException with the name of the
argument that was null?

I’ll take the ArgumentNullException any time, thank you.

The ASP.NET framework translates an unhandled exception to a 500
Internal Server Error response. That’s not what we want in this case.

5.2.1 Bad Dates
When input is invalid, an HTTP API should return 400 Bad Request [2].
That’s not what happens. Add a test that reproduces the problem.

Listing 5.3 shows how to test what happens when the reservation date and
time is missing. You may wonder why I wrote it as a [Theory] with only a
single test case. Why not a [Fact]?

I admit that I cheated a bit. Once again, the art of software engineering
manifests itself. This is based on the shifting sands of individual experience
[4] – I know that I’m going to add more test cases soon, so I find it easier to
start with a [Theory].

Listing 5.3 Test what happens when you post a reservation DTO with a
missing at value.
(Restaurant/9e49134/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(null, "j@example.net", "Jay Xerxes", 1)]

public async Task PostInvalidReservation(

 string at,

 string email,

 string name,

 int quantity)

{

 var response =

 await PostReservation(new { at, email, name, quantity

});

 Assert.Equal(HttpStatusCode.BadRequest,

response.StatusCode);

}

The test fails because the response’s status code is 500 Internal Server
Error.

You can easily pass the test with the code in listing 5.4. The major
difference from listing 5.2 is the addition of the Null Guard.

Listing 5.4 Guard against null At property.
(Restaurant/9e49134/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (dto.At is null)

 return new BadRequestResult();

 var r = new Reservation(

 DateTime.Parse(dto.At, CultureInfo.InvariantCulture),

 dto.Email!,

 dto.Name!,

 dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

The C# compiler is clever enough to detect the Guard Clause, which means
that you can remove the exclamation mark after dto.At.

You can add another test case where the email property is missing, but let’s
fast-forward one more step. Listing 5.5 contains two new test cases.

Listing 5.5 More test cases with invalid reservations.
(Restaurant/3fac4a3/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(null, "j@example.net", "Jay Xerxes", 1)]

[InlineData("not a date", "w@example.edu", "Wk Hd", 8)]

[InlineData("2023-11-30 20:01", null, "Thora", 19)]

public async Task PostInvalidReservation(

 string at,

 string email,

 string name,

 int quantity)

{

 var response =

 await PostReservation(new { at, email, name, quantity

});

 Assert.Equal(HttpStatusCode.BadRequest,

response.StatusCode);

}

The bottom [InlineData] attribute contains a test case with a missing
email property, while the middle test case supplies an at value that’s not a
date and time.

Listing 5.6 Guard against various invalid input values.
(Restaurant/3fac4a3/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (dto.At is null)

 return new BadRequestResult();

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 var r = new Reservation(d, dto.Email, dto.Name!,

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

return new NoContentResult();

}

Listing 5.6 passes all tests. Notice that I could remove another exclamation
mark by guarding against a null email.

5.2.2 Red Green Refactor

Consider listing 5.6. It’s grown in complexity since listing 4.15. Can you
make it simpler?

This is an important question to regularly ask. In fact, you should ask it
after each test iteration. It’s part of the Red Green Refactor [9] cycle.

Red. Write a failing test. Most test runners render a failing test in red.

Green. Make as minimal change as possible to pass all tests. Test runners
often render passing tests in green.

Refactor. Improve the code without changing its behaviour.

Once you’ve moved through all three phases, you start over with a new
failing test. Figure 5.2 illustrates the process.

Figure 5.2 The Red Green Refactor cycle.

So far in the book’s running example, you’ve only seen oscillations of red-
green, red-green, and red-green. It’s time to add the third phase.

The Science of Test-Driven Development

The Red Green Refactor process is one of the most scientific
methodologies of software engineering that I can think of.

In the scientific method, you first form a hypothesis in the form of a
prediction of a falsifiable outcome. Then you perform an experiment
and measure the result. Finally, you compare the actual to the
predicted outcome.

Does that sound familiar?

That sounds like the Arrange Act Assert [9] pattern, although we
should be careful not to overextend the metaphor. The act phase is the
experiment, and the assert phase is where you compare expected and
actual outcomes.

The red and green phases in the Red Green Refactor cycle are small,
ready-made science experiments in their own right.

In the red phase, the ready-made hypothesis is that when you run the
test you just wrote, it should fail. This is a measurable experiment that
you can perform. It has a quantitative outcome: it’ll either pass or fail.

If you adopt Red Green Refactor as a consistent process, you may be
surprised how often you get a passing test in this phase. Remember
how easily the brain jumps to conclusions [51]. You’ll inadvertently
write tautological assertions [105]. Such false negatives happen, but
you wouldn’t discover them if you didn’t perform the experiment.

Likewise, the green phase is a ready-made hypothesis. The prediction
is that when you run the test, it’ll succeed. Again, the experiment is to
run the test, which has a quantifiable result.

If you want to move towards software engineering, and if you believe
that there’s a relationship between science and engineering, I can’t
think of anything more appropriate than test-driven development.

In the refactor phase, you consider the code you wrote in the green phase.
Can you improve it? If so, that would be refactoring.

“Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure.” [34]

How do you know that you don’t change the external behaviour? It’s
difficult to prove a universal conjecture, but it’d be easy to disprove. If just
one automated test were to fail after a change, you’d know that you broke
something. Thus, a minimum bar is that if you change the structure of the
code, all tests should still pass.

Can listing 4.15 be improved while still passing all tests? Yes, it turns out
that the null guard of dto.At is redundant. Listing 5.7 shows the simplified
Post method.

Listing 5.7 It’s not necessary to guard against a null At property –
DateTime.TryParse already does that.
(Restaurant/b789ef1/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 var r = new Reservation(d, dto.Email, dto.Name!,

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

Why does this still work? It works because DateTime.TryParse already
checks for null, and if the input is null, the return value is false.

How could you have known that? I’m not sure that I can give an answer
that leads to reproducible results. I thought of this refactoring because I
knew the behaviour of DateTime.TryParse. This is another example of
programming based on the shifting sands of individual experience [4]–the
art in software engineering.

5.2.3 Natural Numbers
Encapsulation is more than just checking for null. It’s a contract that
describes valid interactions between objects and callers. One way to specify
validity is to state what’s considered invalid. By implication all else is valid.

When you prohibit null references, you’re implicitly allowing all non-null
objects. Unless you add more constraints, that is. Listing 5.7 already does
that for dto.At. Not only is null prohibited, but the string must also
represent a proper date and time.

Design by Contract

Encapsulation is the idea that you should be able to interact with an
object without intimate knowledge of its implementation details. This
serves at least two purposes:

• It enables you to change the implementation; that is to refactor.

• It allows you to think of an object in an abstract way.

The second point is important when it comes to software engineering.
Recall from chapter 3 that a fundamental problem is the brain’s
cognitive constraints. You can only keep track of seven things in your
short-term memory. Encapsulation enables you to ‘replace’ the many

details of an object’s implementation with a simpler contract. Recall
Robert C. Martin’s definition of abstraction:

“Abstraction is the elimination of the irrelevant and the amplification of the essential” [60]

The essential quality of an object is its contract. It’s usually simpler
than the underlying implementation, so it fits better in your brain.

The idea of making contracts an explicit part of object-oriented
programming is closely associated with Bertrand Meyer and the Eiffel
language. In Eiffel, contracts are an explicit part of the language [67].

While no modern languages have made contracts explicit to the degree
that Eiffel did, you can still design with contracts in mind. A Guard
Clause [7], for example, can enforce a contract by rejecting invalid
input.

Design explicitly with an eye to what does and does not constitute
valid input, and what guarantees you can give about output.

What about the other constituent elements of a reservation? Using C#’s
static type system, the ReservationDto class shown in listing 4.11 already
(by its lack of the ? symbol) declares that Quantity can’t be null. But
would any integer be an appropriate reservation quantity? 2? 0? -3?

2 seems like a reasonable number of people, but clearly not -3. What about
0? Why would you want to make a reservation for no people?

It seems to make most sense that a reservation quantity is a natural number.
In my experience, this frequently happens when you evolve a Domain
Model [33][26]. A model is an attempt to describe the real world3, and in
the real world, natural numbers abound.

3. Even when the ‘real world’ is only a business process.

Listing 5.8 shows the same test method as listing 5.5, but with two new test
cases with invalid quantities.

Listing 5.8 More test cases with invalid quantities. The highlighted test
cases are new, compared to listing 5.5.
(Restaurant/a6c4ead/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(null, "j@example.net", "Jay Xerxes", 1)]

[InlineData("not a date", "w@example.edu", "Wk Hd", 8)]

[InlineData("2023-11-30 20:01", null, "Thora", 19)]

[InlineData("2022-01-02 12:10", "3@example.org", "3 Beard", 0)]

[InlineData("2045-12-31 11:45", "git@example.com", "Gil Tan",

-1)]

public async Task PostInvalidReservation(

 string at,

 string email,

 string name,

 int quantity)

{

 var response =

 await PostReservation(new { at, email, name, quantity

});

 Assert.Equal(HttpStatusCode.BadRequest,

response.StatusCode);

}

These new test cases in turn drove the revision of the Post method you can
see in listing 5.9. The new Guard Clause [7] only accepts natural numbers.

Listing 5.9 Post now also guards against invalid quantities.
(Restaurant/a6c4ead/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 if (dto.Quantity < 1)

 return new BadRequestResult();

 var r = new Reservation(d, dto.Email, dto.Name!,

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

Most programming languages come with built-in data types. There are
typically several integer data types: 8-bit integers, 16-bit integers, and so
on.

Normal integers, however, are signed. They describe negative numbers as
well as positive numbers. That’s frequently not what you want.

You can sometimes get around the issue by using unsigned integers, but it
wouldn’t work in this case, because an unsigned integer would still allow
zero. To reject a reservation for no people, you’d still need a Guard Clause.

The code in listing 5.9 compiles and all tests pass. Commit the changes in
Git, and consider pushing them through your deployment pipeline.

5.2.4 Postel’s Law
Let’s recapitulate the process so far. What constitutes a valid reservation?
The date must be a proper date, and the quantity must be a natural number.
It’s also a requirement that Email isn’t null, but is that it?

Shouldn’t we require a valid email address? And what about the name?

Email addresses are notoriously difficult to validate [41], and even if you
had a full implementation of the SMTP specification, what good would it
do you?

Users can easily give you a bogus email address that fits the spec. The only
way to really validate an email address is to send a message to it and see if
that provokes a response (such as the user clicking on a validation link).
That would be a long-running asynchronous process, so even if you’d want
to do that, you can’t do it as a blocking method call.

The bottom line is that it makes little sense to validate the email address,
apart from checking that it isn’t null. For that reason, I’m not going to
validate it more than I’ve already done.

What about the name? It’s mostly a convenience. When you show up at the
restaurant, the maître d’ will ask for your name rather than your email
address or a reservation ID. If you never gave your name when you made
the reservation, the restaurant can probably find you by email address
instead.

Instead of rejecting a null name, you can convert it to an empty string. That
design decision follows Postel’s law, because you’re being liberal with the
input name.

Postel’s Law

Designing object interactions according to contract means thinking
explicitly about pre- and postconditions. Which conditions must the
client fulfil before interacting with the object? Which guarantees does
the object give about the conditions after the interaction? These
questions are closely related to declarations about input and output.

You can use Postel’s law to deliberately contemplate pre- and
postconditions. I’ll paraphrase it as:

Be conservative in what you send, be liberal in what you accept.

Jon Postel originally formulated the guideline as part of the TCP
specification, but I find it a useful guideline in the wider context of
API design.

When you issue a contract, the stronger guarantees you give, and the
less you demand of the other part, the more attractive you make the
contract.

When it comes to API design, I usually interpret Postel’s law as
allowing input as long as I can meaningfully work with it, but no
longer. A corollary is that while you should be liberal in what you
accept, there’s still going to be input you can’t accept. As soon as you
detect that that’s the case, fail fast and reject the input.

You should still have a driver for that change, so add another test case like
listing 5.10. The biggest change compared to listing 5.1 is the new test case,
which is given by the third [InlineData] attribute. That test case initially
fails, as it’s supposed to do according to the Red Green Refactor process.

Listing 5.10 Another test case with a null name. The highlighted test case is
new compared to listing 5.1.
(Restaurant/c31e671/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(

 "2023-11-24 19:00", "juliad@example.net", "Julia Domna",

5)]

[InlineData("2024-02-13 18:15", "x@example.com", "Xenia Ng",

9)]

[InlineData("2023-08-23 16:55", "kite@example.edu", null, 2)]

public async Task PostValidReservationWhenDatabaseIsEmpty(

 string at,

 string email,

 string name,

 int quantity)

{

 var db = new FakeDatabase();

 var sut = new ReservationsController(db);

 var dto = new ReservationDto

 {

 At = at,

 Email = email,

 Name = name,

 Quantity = quantity

 };

 await sut.Post(dto);

 var expected = new Reservation(

 DateTime.Parse(dto.At, CultureInfo.InvariantCulture),

 dto.Email,

 dto.Name ?? "",

 dto.Quantity);

 Assert.Contains(expected, db);

}

In the green phase, make the test pass. Listing 5.11 shows one way to do
that. You could have used a standard ternary operator, but C#’s null
coalescing operator (??) is a more compact alternative. In a way, it replaces
the ! operator, but it’s a good trade-off, because ?? doesn’t suppress the
compiler’s null-check engine.

In the refactor phase, you ought to consider if you can make any
improvements to the code. I think that you can, but that’s going to be a
longer discussion. There’s no rule that prohibits a check-in between the
green and the refactor phases. For now, commit the current changes to Git
and push them through your deployment pipeline.

Listing 5.11 The Post method converts null names to the empty string.
(Restaurant/c31e671/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 if (dto.Quantity < 1)

 return new BadRequestResult();

 var r =

 new Reservation(d, dto.Email, dto.Name ?? "",

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

5.3 Protection of Invariants
Do you see anything wrong with listing 5.11? How does it look?

If we’re concerned with complexity, it doesn’t look too bad. Visual Studio
comes with a built-in calculator of simple code metrics, such as cyclomatic
complexity, depth of inheritance, lines of code, and so on. The metric I
mostly pay attention to is cyclomatic complexity. If it exceeds seven4 I
think you should do something to reduce the number, but currently it’s at
six.

4. Recall from section 3.2.1 that I use the number seven as a token for the brain’s short-term memory
limit.

On the other hand, if you consider the entire system, there’s more going on.
While the Post method checks the preconditions of what constitutes a valid
reservation, that knowledge is immediately lost. It calls the Create method
on its Repository. Recall that this method is implemented by the
SqlReservationsRepository class in listing 4.19.

If you’re a maintenance programmer, and the first glimpse you get of the
code base is listing 4.19, you may have questions about the reservation
parameter.

Is At a proper date? Is Email guaranteed to not be null? Is Quantity a
natural number?

You can look at the Reservation class in listing 4.12 and see that, indeed,
Email is guaranteed to not be null, because you’ve used the type system to

declare it non-nullable. The same is true for the date, but what about the
quantity? Can you be sure that it isn’t negative, or zero?

At the moment, the only way you can answer that question is by some
detective work. What other code calls the Create method? Currently,
there’s only one call site, but this could change in the future. What if there
were multiple callers? That’s a lot to keep track of in your head.

Wouldn’t it be easier if there were some way that would guarantee that the
object has already been validated?

5.3.1 Always Valid
Reduced to its essence, encapsulation should guarantee that an object can
never be in an invalid state. There are two dimensions to that definition:
validity and state.

You’ve already encountered heuristics such as Postel’s law that help you
think about what’s valid and invalid. What about state?

The state of an object is the combination of its constituent values. That
combination should always be valid. If an object supports mutation then
each operation that changes its state must guarantee that the operation
doesn’t result in an invalid state.

One of the many attractive qualities of immutable objects is that you only
have to consider validity in one place: the constructor. If initialisation
succeeded, the object should be in a valid state. That’s currently not true for
the Reservation class shown in listing 4.12.

That’s an imperfection. You should make sure that you can’t create a
Reservation object with a negative quantity. Use a Parametrised Test [66]
like listing 5.12 to drive this change.

Listing 5.12 A parametrised test that verifies that you can’t create
Reservation objects with invalid quantities.
(Restaurant/b3ca85e/Restaurant.RestApi.Tests/ReservationTests.cs)

Click here to view code image

[Theory]

[InlineData(0)]

[InlineData(-1)]

public void QuantityMustBePositive(int invalidQantity)

{

 Assert.Throws<ArgumentOutOfRangeException>(

 () => new Reservation(

 new DateTime(2024, 8, 19, 11, 30, 0),

 "mail@example.com",

 "Marie Ilsøe",

 invalidQantity));

}

I chose to parametrise this test method because I consider the value zero
fundamentally different from negative numbers. Perhaps you think that zero
is a natural number. Perhaps you don’t. As with so many other things5

there’s no consensus. Despite this, the test makes it clear that zero is an
invalid quantity. It also uses -1 as an example of a negative number.

5. What’s a unit? What’s a mock?

The test asserts that when you try to initialise a Reservation object with an
invalid quantity, it should throw an exception. Notice that it doesn’t assert
on the exception message. The text of an exception message isn’t part of the
object’s behaviour. That’s not to say that the message isn’t important, but
there’s no reason to couple tests to implementation details more than
necessary. It would only mean that if you later want to change the exception
message, you’d have to edit both the System Under Test and the test. Don’t
repeat yourself [50].

In the red phase of Red Green Refactor this test fails. Move to the green
phase by making it pass. Listing 5.13 shows the resulting constructor.

Since the Reservation class is immutable, this effectively guarantees that
it’ll never be in an invalid state6. This means that all code that handles

6. I’m pretending that FormatterServices.GetUninitializedObject doesn’t exist. Don’t use that
method.

Listing 5.13 Reservation constructor with guard against non-positive
quantity. (Restaurant/b3ca85e/Restaurant.RestApi/Reservation.cs)
Click here to view code image

public Reservation(

 DateTime at,

 string email,

 string name,

 int quantity)

{

 if (quantity < 1)

 throw new ArgumentOutOfRangeException(

 nameof(quantity),

 "The value must be a positive (non-zero) number.");

 At = at;

 Email = email;

 Name = name;

 Quantity = quantity;

}

Reservation objects can dispense with defensive coding. The At, Email,
Name, and Quantity properties are guaranteed to be populated, and the
Quantity will be a positive number. Subsection 7.2.5 returns to the
Reservation class to take advantage of these guarantees.

5.4 Conclusion
Encapsulation is one of the most misunderstood concepts of object-oriented
programming. Many programmers believe that it’s a prohibition against
exposing class fields directly – that class fields should be ‘encapsulated’
behind getters and setters. That has little to do with encapsulation.

The most important notion is that an object should guarantee that it’ll never
be in an invalid state. That’s not the callers’ responsibility. The object
knows best what ‘valid’ means, and how to make that guarantee.

The interaction between an object and a caller should obey a contract. This
is a set of pre- and postconditions.

The preconditions describe the responsibilities of the caller. If the calling
code fulfils those obligations, however, the postconditions describe the
guarantees given by the object.

Pre- and postconditions together form invariants. You can use Postel’s law
to design a useful contract. The less you ask of the caller, the easier it is for
the caller to interact with the object. The better guarantees you can give, the
less defensive code the caller has to write.

6 Triangulation

Some years ago I visited a client who wanted my help with their legacy
code base. I had the opportunity to interview a few of the developers, and I
asked the newest team member how long it took before he felt that he could
contribute on his own.

“Three months,” he replied.

It took him that long to memorise the code base to a degree where he felt
confident editing it. I saw some of it, and it was truly complex. There were
more than seven things going on. In fact, there were easily more than
seventy things going on in some methods.

It takes time to learn to navigate such a code base, but it isn’t impossible.
You may think that this disproves the thesis that the human brain can only
keep track of seven things. I think, however, that the thesis still holds, as I’ll
now explain.

6.1 Short-Term versus Long-Term Memory
Recall from subsection 3.2.1 that the number seven relates to short-term
memory. Besides working memory, the brain also has long-term memory
with capacity on an entirely different scale [80].

As covered in subsection 3.2.1, we should be careful with the brain-asa-
computer metaphor. Still, it seems obvious that we have a sort of memory
store with vast capacity and tremendous span, although fickle. It’s a
different system than short-term memory, although there’s some connection
between the two, as implied by figure 6.1.

Figure 6.1 Short-term memory is much smaller than long-term memory
(figure not to scale). Most chunks of short-term memory ‘disappear’
when they ‘go out of scope’, but some occasionally make it to long-term
memory, where they may stay for a long time. Information from long-
term memory can also be retrieved and ‘loaded’ into short-term
memory. It’s tempting to think of RAM and hard drive, but we should
be careful that we don’t push the metaphor too far.

When you wake up from a strange dream, you can remember parts of it, but
the memory quickly fades.

In the old days, you sometimes had to memorise a phone number for a few
seconds in order to dial it. These days, you may have to remember a two-
factor authentication one-time code a few seconds to type it in. The next
minute, you’ve forgotten that number.

Some pieces of information, however, may first appear in short-term
memory, but then you decide that it’s important enough to commit to long-
term memory. When I met my future wife in 1995, I quickly decided to
memorise her phone number.

Conversely, you can recall information from long-term memory and work
with it in short-term memory. For example, you may have memorised
various APIs. When you write code, you retrieve the relevant methods into
your short-term memory and combine them.

6.1.1 Legacy Code and Memory
I believe that when you work with legacy code, you slowly, painstakingly
commit the structure of the code base to long-term memory. You can work
with legacy code, but there’s (at least) two problems:

• It takes time to learn the code base

• Change is hard

The first point alone should give pause to hiring managers. If it takes three
months before a new employee can be productive, programmers become
irreplaceable. From an employee’s perspective, if you want to be cynical,
there’s a degree of job security in being a legacy code programmer. Even
so, it can be disenchanting, and it may also make it harder for you to find a
new job. Legacy skills transfer poorly.

What’s even worse is the second point. Information committed to long-term
memory is harder to change. What would happen if you try to improve the
code?

The book Working Effectively with Legacy Code [27] contains lots of
techniques to ameliorate complicated code. It involves changing the
structure of it.

What happens when you change the structure of code, as illustrated in
figure 6.2? The information in your long-term memory becomes outdated.
It gets harder to work with the code base, because your painstakingly
acquired knowledge no longer applies.

Not only is legacy code difficult to work with. It’s also hard to escape from.

Figure 6.2 Refactoring legacy code comes with its own set of
problems. Imagine that the diagram on the left is a complex system. You
may be able to refactor it to a less complex system. What happens if the
system to the right, while simpler, is still too complex to fit in your
head? You may have had the system on the left memorised, but the
system on the right is new. Your painstakingly acquired knowledge is
now void, and something unknown has taken its place. It’d be better to
avoid writing legacy code in the first place.

6.2 Capacity
Software engineering should sustain the organisation that owns the
software. You develop sustainable code bases by making sure that the code
fits in your brain. The capacity of your working memory is seven, so only a
few things should be going on at the same time.

Any non-trivial piece of software is going to have much more going on, so
you need to decompose and compartmentalise the code structure into small
chunks that each fit in your brain.

As Kent Beck puts it:

“The goal of software design is to create chunks or slices that fit into a human mind. The software
keeps growing but the human mind maxes out, so we have to keep chunking and slicing differently
if we want to keep making changes.” [10]

How to do that is the most important discipline of software engineering.
Fortunately, there’s a set of heuristics you can use to guide you.

I think that you learn best from examples. At the moment, the book’s
running example is still so simple that it all fits in your brain. We need a
more complex code base to warrant decomposition.

6.2.1 Overbooking
Apart from minimal input validation, the current restaurant system tolerates
any reservation, in the future or in the past, for any positive quantity. The
restaurant that it supports, however, has a physical capacity. Additionally, it
may already be fully booked on a given date. The system should check a
reservation against existing reservations and the capacity of the restaurant.

As is the dominant technique in this book, use a test as a driver for the new
functionality. Which test should you write?

Listing 5.11 is the most up-to-date version of the Post method. If you
follow the Transformation Priority Premise [64], the transformation you’d
like to make is unconditional→if. You want to split the execution path by
returning 204 No Content if all goes well, but return some error status code
if the request is beyond the capacity of the restaurant. You should write a
test that drives that behaviour. Listing 6.1 shows such a test.

The test first makes a reservation and then attempts to make another. Notice
that the code is structured according to the Arrange Act Assert layout
heuristic. The blank lines clearly delineate the three phases of the test.

The first reservation for six persons is part of the arrange phase, whereas
the second reservation is the act.

Listing 6.1 Test that overbooking shouldn’t be possible. Note that the
restaurant capacity is implicit in this test. You should consider making it
more explicit.
(Restaurant/b3694bd/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Fact]

public async Task OverbookAttempt()

{

 using var service = new RestaurantApiFactory();

 await service.PostReservation(new

 {

 at = "2022-03-18 17:30",

 email = "mars@example.edu",

 name = "Marina Seminova",

 quantity = 6

 });

 var response = await service.PostReservation(new

 {

 at = "2022-03-18 17:30",

 email = "shli@example.org",

 name = "Shanghai Li", quantity = 5

 });

 Assert.Equal(

 HttpStatusCode.InternalServerError,

 response.StatusCode);

}

Finally, the assertion verifies that the response is 500 Internal Server
Error

1.

1. This design decision is contentious. Whenever I return that status code, people argue that 500
Internal Server Error is reserved for truly unexpected error conditions. While I sympathise
with that opinion, the question then becomes: Which HTTP status code to use instead? I’ve found
neither the HTTP 1.1 specification nor the RESTful Web Services Cookbook [2] helpful in this
regard. In any case, nothing hinges on this particular status code. If you favour another status code,
just mentally replace 500 Internal Server Error with your preference.

You should wonder why the expected outcome is an error. From looking at
the test, it isn’t clear. You should make a note to revisit this test later to
improve it. This is a technique that Kent Beck describes in Test-Driven

Development By Example [9]. While you write tests, you think of other
things you should improve. Don’t get derailed; write down your ideas and
move on.

The implicit problem that listing 6.1 reproduces is that both reservations are
for the same date. The first reservation is for six people, and while there’s
no explicit assertion, the test assumes that this reservation succeeds. In
other words, the restaurant’s capacity must be at least six.

The next reservation for five people fails. As the name of the test implies,
the test case is an overbooking attempt. The restaurant doesn’t have
capacity for eleven people. Implicitly, what the test tells us is that the
restaurant capacity is somewhere between six and ten.

Code ought to be more explicit than this. As the Zen of Python goes:

“Explicit is better than implicit.” [79]

This rule applies to test code as well as production code. The test in listing
6.1 ought to make the restaurant’s capacity more explicit. I could have done
this before showing you the code, but I want you to see how to write code
in small increments. That includes leaving room for improvement. Take a
note of any imperfections, but don’t let them slow you down. Perfect is the
enemy of the good. Let’s keep moving.

I once dined at a hipster restaurant in Brooklyn. The only seating in the
entire place was at a counter with a view to the kitchen, as illustrated by
figure 6.3.It would seat twelve people, and your party would be seated next
to other parties unless you reserved all twelve seats. Serving started at
exactly 18:30, regardless of whether you were present or not. Such
restaurants exist. I point it out because they represent the simplest
reservation rules you can imagine. There’s one shared table, and only one
seating per day. That’s the arrangement we’ll aim for—for now.

What’s the simplest thing that could possibly work [22]? Listing 6.2 shows
a simple solution.

While this implementation is clearly wrong, it passes the new test, so
commit the change to Git.

Figure 6.3 Sample table layout. This restaurant only has bar-style
seating with a view to the kitchen area.

Listing 6.2 Despite test coverage, the branching performed in this version
of the Post method doesn’t implement the desired business rules.
(Restaurant/b3694bd/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 if (dto.Quantity < 1)

 return new BadRequestResult();

 if (dto.Email == "shli@example.org")

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 var r =

 new Reservation(d, dto.Email, dto.Name ?? "",

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

6.2.2 The Devil’s Advocate
You’ve already seen a similar example of what looks like deliberate
sabotage: Listing 4.15 hard-coded the data that it saved in the database. I
call such intentional obstruction the Devil’s Advocate technique [98]. You
don’t have to always apply it, but it can be useful.

I frequently teach test-driven development, and I’ve observed that
beginners often struggle to produce good test cases. How do you know that
you’ve written enough test cases?

The Devil’s Advocate is a technique that helps you answer that question.
The idea, in all its simplicity, is to deliberately try to pass all tests with an
obviously incomplete implementation. That’s what the code in listing 6.2
does.

This is useful because it works as a critique of your tests. If you can write a
simple but clearly insufficient implementation, it tells you that you need
more test cases to drive the desired behaviour. You can think of this process
as a sort of triangulation [9], or, as Robert C. Martin puts it:

“As the tests get more specific, the code gets more generic.” [64]

You need to add at least one more test case to prompt the correct
implementation. Fortunately, a new test case is often just a new line of test
data in a Parametrised Test [66], as you can see in listing 6.3.

That may not have been the test method you’d expected. Perhaps you
thought the new test case should have been added to the OverbookAttempt
method that we are ‘currently’ working with (listing 6.1). Instead, this is a

fourth test case for an ‘older’ test
(PostValidReservationWhenDatabaseIsEmpty). Why is that?

Consider the Transformation Priority Premise [64]. What’s wrong with
listing 6.2? It branches on a constant (the string "shli@example.org").
Which code transformation should you aim for to improve the code? The
constant→scalar transformation sounds like the best option. You don’t
want execution to branch on a constant, you want it to branch on a variable.

Listing 6.3 Test of successfully making a reservation. The only change
from listing 5.10 is the addition of the highlighted fourth test case.
(Restaurant/5b82c77/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(

 "2023-11-24 19:00", "juliad@example.net", "Julia Domna",

5)]

[InlineData("2024-02-13 18:15", "x@example.com", "Xenia Ng",

9)]

[InlineData("2023-08-23 16:55", "kite@example.edu", null, 2)]

[InlineData("2022-03-18 17:30", "shli@example.org", "Shanghai

Li", 5)]

public async Task PostValidReservationWhenDatabaseIsEmpty(

 string at,

 string email,

 string name,

 int quantity)

{

 var db = new FakeDatabase();

 var sut = new ReservationsController(db);

 var dto = new ReservationDto

 {

 At = at,

 Email = email,

 Name = name,

 Quantity = quantity

 };

 await sut.Post(dto);

 var expected = new Reservation(

 DateTime.Parse(dto.At, CultureInfo.InvariantCulture),

 dto.Email,

 dto.Name ?? "",

 dto.Quantity);

 Assert.Contains(expected, db);

}

The code in listing 6.2 implies that the email address shli@example.org is
somehow illegal. That’s wide of the mark. Which test case can you add that
dispels that implied notion? One where shli@example.org is included in a
successful reservation. That’s what listing 6.3 does. It adds exactly the same
reservation, but the circumstances differ. In the
PostValidReservationWhenDatabaseIsEmpty test method, there’s no prior
reservation.

Unfortunately, the Devil can counter with the implementation in listing 6.4.

Listing 6.4 Tests force the Post method to consider existing reservations to
decide whether or not to reject a reservation, but the implementation is still
incorrect.
(Restaurant/5b82c77/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 if (dto.Quantity < 1)

 return new BadRequestResult();

 var reservations =

 await

Repository.ReadReservations(d).ConfigureAwait(false);

 if (reservations.Any())

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 var r =

 new Reservation(d, dto.Email, dto.Name ?? "",

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

The new test case in listing 6.3 effectively prevents the Devil from rejecting
the reservation based exclusively on the the dto. Instead, the method must
consider the wider state of the application to pass all tests.

It correctly does this by calling ReadReservations on the injected
Repository, but it incorrectly decides to reject the reservations if there are
any existing reservations for that date. Still deficient, but closer to proper
behaviour.

6.2.3 Existing Reservations
The ReadReservations method is a new member of the
IReservationsRepository interface shown in listing 6.5. Implementations
ought to return all reservations on the supplied date.

Listing 6.5 The highlighted ReadReservations method is new, compared to
listing 4.14.
(Restaurant/5b82c77/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime dateTime);

}

When you add a new member to an interface, you break existing
implementations. In this code base, two of those exist:

SqlReservationsRepository and the test-specific FakeDatabase.TheFake
[66] implementation is straightforward, as shown in listing 6.6.ItusesLINQ
to search within itself for all reservations that fall between midnight and the
tick2 before midnight the next day.

2. In .NET a tick is one hundred nanoseconds. It represents the smallest resolution of the built-in date
and time API.

Listing 6.6 FakeDatabase implementation of the ReadReservations
method. Recall from listing 4.13 that FakeDatabase inherits from a
collection base class. That’s the reason it can use LINQ to filter itself.
(Restaurant/5b82c77/Restaurant.RestApi.Tests/FakeDatabase.cs)
Click here to view code image

public Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime dateTime)

{

 var min = dateTime.Date;

 var max = min.AddDays(1).AddTicks(-1);

 return Task.FromResult<IReadOnlyCollection<Reservation>>(

 this.Where(r => min <= r.At && r.At <= max).ToList());

}

Write Numeric Expressions in Number-Line Order

Notice that the filter expression in listing 6.6 is written in number-line
order. Variables are arranged in ascending order from left to right. min
is supposed to be the smallest value, so put it farthest to the left, like
you’d do on a number line.

On the other hand, max is supposed to be the greatest value, so put it to
the extreme right. The variable that the filter expression is concerned
with is r.At, so put it between the two extremes.

Organising comparisons like this gives the reader a visual aid [65]. It
lays out the values on an implicit contiguous number line.

In practice it means that you’ll exclusively be using the less-than and
less-than-or-equal operators, instead of the greater-than and greater-
than-or-equal operators.

The other implementation of the IReservationsRepository interface is
SqlReservationsRepository. It, too, must have a proper implementation.
Like previously, you can treat that class as a Humble Object [66], so
dispense with the automated tests. It’s a straightforward SQL SELECT query,
so I’m not going to use space to show it here. Consult the book’s
accompanying source code repository if you’re curious about the details.

6.2.4 Devil’s Advocate versus Red Green Refactor
The code in listing 6.4 is still imperfect. While it does query the database
for existing reservations, it rejects new reservations if just a single
reservation already exists. It passes all tests, though.

Using the triangulation process implied by Robert C. Martin [64], add more
test cases until you’ve defeated the Devil. Which test case should you add
next?

The system should accept reservations as long as it has enough remaining
capacity, even if it already has one or more reservations for a given day.
This suggests a test similar to listing 6.7.

Listing 6.7 Test that it’s possible to book a table even when there’s already
an existing reservation for the same date.

(Restaurant/bf48e45/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Fact]

public async Task BookTableWhenFreeSeatingIsAvailable()

{

 using var service = new RestaurantApiFactory();

 await service.PostReservation(new

 {

 at = "2023-01-02 18:15",

 email = "net@example.net",

 name = "Ned Tucker",

 quantity = 2

 });

 var response = await service.PostReservation(new

 {

 at = "2023-01-02 18:30",

 email = "kant@example.edu",

 name = "Katrine Nøhr Troelsen",

 quantity = 4

 });

 Assert.True(

 response.IsSuccessStatusCode,

 $"Actual status code: {response.StatusCode}.");

}

Like the test in listing 6.1 it adds one reservation in the arrange phase, and
another in the act phase, but unlike the OverbookAttempt test, this one
expects a successful outcome. This is because the sum of the quantities is
six, and we know that the restaurant can accommodate at least six guests.

Can the Devil’s Advocate defeat this test? In other words, is it possible to
change the Post method so that it passes all tests, yet still doesn’t
implement the correct business rule?

Yes, that’s possible, but it’s getting harder. Listing 6.8 shows the relevant
snippet from the Post method (i.e. not the entire Post method). It uses
LINQ to first convert the reservations to a collection of quantities, and
then picks only the first of those.

The SingleOrDefault method returns a value if the collection contains a
single element, or a default value if the collection is empty. The default int
value is 0, so as long as there’s no reservations, or a single existing
reservation, this works.

Listing 6.8 The part of the Post method that decides whether or not to
reject the reservation. The Devil’s Advocate still attempts to circumvent the
requirements specified by the test suite. The restaurant’s capacity is hard-
coded at 10.
(Restaurant/bf48e45/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

var reservations =

 await Repository.ReadReservations(d).ConfigureAwait(false);

int reservedSeats =

 reservations.Select(r => r.Quantity).SingleOrDefault();

if (10 < reservedSeats + dto.Quantity)

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

If the collection contains more than one element, the SingleOrDefault
method will throw an exception, but since no test cases exercise that
situation, all tests pass.

It seems that once again, the Devil’s Advocate has thwarted our plans for a
proper implementation. Should we write another test case?

We could do that, but on the other hand, don’t forget the Red Green
Refactor process. Listing 6.7 represents the red phase, while listing 6.8
represents the green phase. Now it’s time to refactor. Can you improve the
code in listing 6.8?

It’s already using LINQ, so how about using Sum instead of
SingleOrDefault? Listing 6.9 shows the entire Post method after this
refactoring. Compare the decision logic in the middle of the method to
listing 6.8. It’s actually simpler!

The code in listing 6.9 still passes all tests, but is also more general. That’s
an improvement, so check the changes into Git.

How do you detect such an opportunity for refactoring? How do you know
that the Sum method exists? Such knowledge is still based on experience. I
never promised that the art of software engineering would be an altogether
deterministic process. It’s just as well; if it was, machines could do our job.

Listing 6.9 The Post method now correctly decides to accept or reject a
reservation based on the total sum of reservation quantities. The restaurant’s
capacity is hard-coded at 10. That’s another imperfection we should
address.
(Restaurant/9963056/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!DateTime.TryParse(dto.At, out var d))

 return new BadRequestResult();

 if (dto.Email is null)

 return new BadRequestResult();

 if (dto.Quantity < 1)

 return new BadRequestResult();

 var reservations =

 await

Repository.ReadReservations(d).ConfigureAwait(false);

 int reservedSeats = reservations.Sum(r => r.Quantity);

 if (10 < reservedSeats + dto.Quantity)

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 var r =

 new Reservation(d, dto.Email, dto.Name ?? "",

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

6.2.5 When Do You Have Enough Tests?
Did the refactoring leave a flank open? What if someone later changes the
code back to using SingleOrDefault? All tests would still pass, but the
implementation would be incorrect.

That’s important question, but I’m not aware of any quantitative answer. I
usually ask myself: How likely is such a regression to happen?

I generally assume benign intent from other programmers3.Thetestsarein
place to prevent us from making the kind of mistakes that our brains tend to
make. So how likely is it, for example, that a programmer would change the
call to Sum to a call to SingleOrDefault?

3. This depends on context. Imagine an open-source project used for something important, such as
security or control of hardware. If a contributor could sneak in malicious code, this could have a
real impact. You might be wise to adopt a more paranoid stance under such circumstances.

I don’t consider it particularly likely, but if it happened, what would be the
impact? We’d get unhandled exceptions in the production environment.
Hopefully, we’d discover the issue quickly and fix it. In such a case, be sure
to write an automated test that reproduces the defect. Any defect that makes
it to production tautologically demonstrates that that particular error could
happen. If it can happen once, it can happen again. Prevent a regression
with a test.

In general, deciding whether you have enough tests is standard risk
assessment. Weigh the probability of an adverse outcome with its impact. I
don’t know of a way to quantify neither probability nor impact, so figuring
this out is still mostly an art.

6.3 Conclusion
In geometry (and geographical surveys) triangulation is a process to
determine the location of a point. When used about test-driven development
it’s a loose metaphor.

When the process is used in geometry, the point in question already exists,
but you don’t know its position. That’s the situation to the left in figure 6.4.

Figure 6.4 Test-driven development is like triangulation, except that the
roles are reversed. In a geographical survey the point already exists and
you must measure the points from where you triangulate to be able to
calculate the position of the target. In test-driven development the
System Under Test initially doesn’t exist, but the measurements (in the
form of tests) do.

When you test-drive a code base, the tests play the role of measurements.
What’s different is that when you add a test, it measures something that
isn’t there yet. That’s the situation to the right in figure 6.4.

The more tests you add, the better you describe the System Under Test, just
as the more measurements you take in a geographical survey, the more
precisely can you determine the target’s position. For this to work, though,
you must shift your perspective substantially between each measurement.

You can use an interplay between the Transformation Priority Premise, the
Devil’s Advocate, and the Red Green Refactor process to arrive at a
comprehensive 360° description of the desired behaviour without too many
redundant test cases.

7 Decomposition

No one deliberately decides to write legacy code. Code bases gradually
deteriorate.

Why is that? Everyone seems to understand that a file with thousands of
lines of code is a bad idea; that methods spanning hundreds of lines are
difficult to work with. Programmers suffer when they have to work with
such code bases.

If everyone understands that, though, then why do they allow the situation
to become so bad?

7.1 Code Rot
Code gradually becomes more complicated because each change seems
small, and no one pays attention to the overall quality. It doesn’t happen
overnight, but one day you realise that you’ve developed a legacy code
base, and by then, it’s too late to do anything about it.

At the beginning, a method has low complexity, but as you fix defects and
add features, the complexity increases, as shown in figure 7.1. If you don’t
pay attention to, say, cyclomatic complexity, you pass seven without
noticing it. You pass ten without noticing it. You pass fifteen and twenty
without noticing it.

Figure 7.1 Gradual decay of a code base. Early on, things begin to go
wrong as a complexity measure crosses a threshold. No one, however,
pays attention to the metric, so you only discover that you have a
problem much later, when the metric has become so great that it may be
impossible to salvage.

One day you discover that you have a problem—not because you finally
look at a metric, but because the code has now become so complicated that
everyone notices. Alas, now it’s too late to do anything about it.

Code rot sets in a little at a time; it works like boiling the proverbial frog.

7.1.1 Thresholds

Agreeing on a threshold can help curb code rot. Institute a rule and monitor
a metric. For example, you could agree to keep an eye on cyclomatic
complexity. If it exceeds seven, you reject the change.

Such rules work because they can be used to counteract gradual decay. It’s
not the specific value seven that contributes to better code quality; it’s the
automatic activation of a rule based on a threshold. If you decide that the
threshold should be ten instead, that’ll also make a difference, but I find
seven a good number, even if it’s more symbolic than a strict limit. Recall
from subsection 3.2.1 that seven is a token for your brain’s working
memory capacity.

Figure 7.2 A threshold can help keep gradual decay in check.

Notice that figure 7.2 suggests that exceeding the threshold is still possible.
Rules are in the way if you must rigidly obey them. Situations arise where
breaking a rule is the best response. Once you’ve responded to the situation,
however, find a way to bring the offending code back in line. Once a

threshold is exceeded, you don’t get any further warnings, and there’s a risk
that that particular code will gradually decay.

You could automate the process. Imagine running cyclomatic complexity
analysis as part of a Continuous Integration build and rejecting changes that
exceed a threshold. This is, in a way, a deliberate attempt to hack the
management effect where you get what you measure. With emphasis on a
metric like cyclomatic complexity, you and your colleagues will pay
attention to it.

Be aware, however, of the law of unintended consequences1.Becarefulwith
instituting hard rules.

1. For an entertaining introduction to the world of unintended consequences and perverse incentives,
see Freakonomics [57]and SuperFreakonomics [58]. While the titles sound silly, as a university-
educated economist, I can vouch for them.

I’ve had success with introducing threshold rules because they increase
awareness. It can help a technical leader shift emphasis to the qualities that
he or she wishes to improve. Once the team’s mindset has changed, the rule
itself becomes redundant.

7.1.2 Cyclomatic Complexity
You’ve already encountered the term cyclomatic complexity here and there
in the book. It’s one of the rare code metrics that I find useful in practice.

You’d expect a book about software engineering to be full of metrics. By
now you’ve realised that this isn’t the case. You can invent myriad code
metrics2, but most have little practical value. Preliminary research suggests
that the simplest metric of all, lines of code, is the most pragmatic predictor
of complexity [43]. I think that’s a good point that we should return to, but I
want to make sure all readers get the message.

2. See for example Object-Oriented Metrics in Practice [56].

The more lines of code, the worse the code base. Lines of code is only a
productivity metric if you measure lines of code deleted. The more lines of

code you add, the more code other people have to read and understand.

While lines of code may be a pragmatic indicator of complexity, cyclomatic
complexity is useful for other reasons. It’s a useful analysis tool because it
not only informs you about complexity, but also guides you when it comes
to unit testing.

Think of cyclomatic complexity as a measure of the number of pathways
through a piece of code.

Even the simplest body of code affords a single pathway, so the minimum
cyclomatic complexity is 1. You can easily ‘calculate’ the cyclomatic
complexity of a method or function. You start at 1, and then count how
many times if and for occurs. For each of these keywords, you increment
the number (which started at 1).

The specifics are language-dependent. The idea is to count branching and
looping instructions. In C#, for example, you’d also have to include
foreach, while, do, and each case in a switch block. In other languages,
the keywords to count will differ.

What’s the cyclomatic complexity of the Post method in the restaurant
reservation system? Try to count all branching instructions in listing 6.9,
starting with the number 1.

Which number did you arrive at?

The cyclomatic complexity of listing 6.9 is 7. Did you arrive at 6? 5?

Here’s how you arrive at 7. Remember to start with 1. For each branching
instruction you find, increment by 1. There are five if statements. 5 plus
the starting number 1 is 6. The last one is harder to spot. It’s the ??

null-coalescing operator which represents two alternative branches: one
where dto.Name is null and one where it isn’t. That’s another branching
instruction3. There’s a total of seven pathways through the Post method.

3. If you aren’t used to thinking about C#’s null operators as branching instructions, this may not
convince you, but maybe this will: Visual Studio’s built-in code metrics calculator also arrives at a
cyclomatic complexity of 7.

Recall from section 3.2.1 that I use the number seven as a symbolic value
that represents the limit of the brain’s short-term memory. If you adopt a
threshold of seven, the Post method in listing 6.9 is right at the limit. You
could leave it as is. That’s fine, but has the consequence that if you need to
add an eighth branch in the future, you should first refactor. Perhaps at that
time, you don’t have time to do that, so if you have time now, it might be
better to do it prophylactically.

Hold that thought. We return to the Post method in section 7.2.2 to refactor
it. Before we do that, however, I think we should cover some other guiding
principles.

7.1.3 The 80/24 Rule
What about the notion that lines of code is a simpler predictor for
complexity?

We shouldn’t forget about that. Don’t write long methods. Write small
blocks of code.

How small?

You can’t give a universally good answer to that question. Among other
things, it depends on the programming language in question. Some
languages are much denser than others. The densest language I’ve ever
programmed in is APL.

Most mainstream languages, however, seem to be verbose to approximately
the same order of magnitude. When I write C# code, I become
uncomfortable when my method size approaches 20 lines of code. C# is,
however, a fairly wordy language, so it sometimes happens that I have to
allow a method to grow larger. My limit is probably somewhere around 30
lines of code.

That’s an arbitrary number, but if I have to quote one, it would be around
that size. Since it’s arbitrary anyway, let’s make it 24, for reasons that I’ll
explain later.

The maximum line count of a method, then, should be 24.

To repeat the point from before, this depends on the language. I’d consider
a 24-line Haskell or F# function to be so huge that if I received it as a pull
request, I’d reject it on the grounds of size alone.

Most languages allow for flexibility in layout. For example, C-based
languages use the ; character as a delimiter. This enables you to write more
than one statement per line:

Click here to view code image

var foo = 32; var bar = foo + 10; Console.WriteLine(bar);

You could attempt to avoid the 24-line-height rule by writing wide lines.
That would, however, defeat the purpose.

The purpose of writing small methods is to nudge yourself towards writing
readable code; code that fits in your brain. The smaller, the better.

For completeness sake, let’s institute a maximum line width as well. If
there’s any accepted industry standard for maximum line width, it’s 80
characters. I’ve used that maximum for years, and it’s a good maximum.

The 80-character limit has a long and venerable history, but what about the
24-line limit? While both are, ultimately, arbitrary, both fit the size of the
popular VT100 terminal, which had a display resolution of 80 × 24
characters.

A box of 80 × 24 characters thus reproduces the size of an old terminal.
Does that mean that I suggest you should write programs on terminals? No,
people always misunderstand this. That should be the maximum size of a
method4. On larger screens, you’d be able to see multiple small methods at
the same time. For example, you could view a unit test and its target in a
split screen configuration.

4. I feel the need to stress the point that this particular limit is arbitrary. The point is to have a
threshold [97]. If your team is more comfortable with a 120 × 40 box, then that’s fine, too. Just to
prove the point, though, I wrote the entire example code base that accompanies this book using the
80 × 24 box as a threshold. It’s possible, but I admit that it’s a close fit for C#.

The exact sizes are arbitrary, but I think that there’s something
fundamentally right about such continuity with the past.

You can keep your line width in check with the help of code editors. Most
development environments come with an option to paint vertical lines in the
edit windows. You can, for example, put a line at the 80-character mark.

If you’ve been wondering why the code in this book is formatted as it is,
one of the reasons is that it stays within the 80 character width limit.

Not only does the code in listing 6.9 have a cyclomatic complexity of 7,it’s
also exactly 24 lines high. That’s one more reason to refactor it. It’s right at
the limit, and I don’t think it’s done yet.

7.2 Code That Fits in Your Brain
Your brain can only keep track of seven items at the same time. It’s a good
idea to take this into account when designing the architecture of the code
base.

7.2.1 Hex Flower
When you look at a piece of code, your brain runs an emulator. It tries to
interpret what the code will do when you execute it. If there’s too much to
keep track of, the code is no longer immediately comprehensible. It doesn’t
fit in your short-term memory. Instead, you must painstakingly work to
commit the structure of the code to long-term memory. Legacy code is close
at hand.

I posit the following rule, then:

No more than seven things should be going on in a single piece of
code.

There’s more than one way to measure that, but one option is to use
cyclomatic complexity. You could diagram the capacity of your short-term
memory like figure 7.3.

Think of each of these circles as a ‘memory slot’ or ‘register’. Each can
hold a single chunk [80] of information.

If you squeeze the above bubbles together and also imagine that they’re
surrounded by other bubbles, the most compact representation is as figure
7.4.

Figure 7.3 The capacity of human short-term memory illustrated as
seven ‘registers’.

Figure 7.4 Seven ‘registers’ arranged in compact form. While hexagons
could be arranged like this in an infinite grid, this particular shape looks
like a stylised flower. For that reason, I’ll refer to such diagrams as ‘hex
flowers’.

Conceptually, you should be able to describe what’s going on in a piece of
code by filling out the seven hexagons in that figure. What would the
contents be for the code in listing 6.9?

It might look like figure 7.5.

Figure 7.5 Hex flower diagram of the branches of the Post method in
listing 6.9.

In each slot, I’ve plotted an outcome related to a branch in the code. From
the cyclomatic complexity metric you know that listing 6.9 has seven
pathways through the code. Those are the chunks I’ve filled into the
hexagons.

All ‘slots’ are filled. If you treat the number seven as a hard limit5, then you
can’t add more complexity to the Post method. The problem is that in the
future, you’re going to have to add more complex behaviour. For example,
you may want to reject all reservations in the past. Also, the business rule
only works for hipster restaurants with communal tables and single
seatings. A more sophisticated reservation system should be able to handle
tables of different sizes, second seatings, and so on.

5. The number seven isn’t really a hard limit. Nothing in the line of reasoning presented here relies
on that exact number, but the visualisation, on the other hand, does.

You’ll have to decompose the Post method to move forward.

7.2.2 Cohesion

How, or where, should you decompose the Post method in listing 6.9?

Perhaps it helps that the code is already organised into sections by a few
blank lines6. There seems to be four sections; the first is a sequence of
Guard Clauses [7]. This section is the best candidate for refactoring.

6. This book doesn’t go into every little detail about how and why you lay out general source code,
including how you should use blank lines. This is already covered in Code Complete [65]. I
consider my use of blank lines to be consistent with it.

How can you tell?

The first section uses no instance members of the owning
ReservationsController class. The second and third sections both use the
Repository property. The fourth section is only a single return expression,
so there’s little to improve there.

That the second and third sections use an instance member doesn’t preclude
them from being extracted into helper methods, but the first section is more
conspicuous. This relates to a central concept in object-oriented design:
cohesion. I like the way that Kent Beck puts it:

“Things that change at the same rate belong together. Things that change at different rates belong
apart.” [8]

Consider how instance fields of a class are used. Maximum cohesion is
when all methods use all class fields. Minimum cohesion is when each
method uses its own disjoint set of class fields.

Blocks of code that don’t use any class fields at all look even more
suspicious in that light. That’s the reason I find that the best refactoring
candidate is the first section of the code.

Your first attempt might resemble listing 7.1. This small method has only
six lines of code and a cyclomatic complexity of 3. According to the
metrics we’ve discussed so far, it looks great.

Notice, however, that it’s marked static. This is necessary because a code
analyser rule7 has detected that it doesn’t use any instance members. That
could be a code smell. We’ll return to that in a moment.

7. CA1822: Mark members as static.

Listing 7.1 Helper method to determine if a reservation DTO is valid.
(Restaurant/f8d1210/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

private static bool IsValid(ReservationDto dto)

{

 return DateTime.TryParse(dto.At, out _)

 && !(dto.Email is null)

 && 0 < dto.Quantity;

}

Did the introduction of the IsValid helper method improve the Post
method? Listing 7.2 shows the result.

Listing 7.2 The Post method using the new IsValid helper method.
(Restaurant/f8d1210/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 if (!IsValid(dto))

 return new BadRequestResult();

 var d = DateTime.Parse(dto.At!,

CultureInfo.InvariantCulture);

 var reservations =

 await

Repository.ReadReservations(d).ConfigureAwait(false);

 int reservedSeats = reservations.Sum(r => r.Quantity);

 if (10 < reservedSeats + dto.Quantity)

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 var r =

 new Reservation(d, dto.Email!, dto.Name ?? "",

dto.Quantity);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

At first glance, that looks like an improvement. The line count is down to
22 and the cyclomatic complexity to 5.

Did it surprise you that cyclomatic complexity decreased?

After all, when you consider the combined behaviour of the Post method
and its IsValid helper method, it hasn’t changed. Shouldn’t we count the
complexity of IsValid into the complexity of the Post method?

That’s a fair question, but it’s not how the measure works. This way of
viewing a method call represents both a danger and an opportunity. If you
need to keep track of the details of how IsValid behaves, then nothing is
gained. If, on the other hand, you can treat it as a single operation, then the
corresponding hex flower (figure 7.6) looks better.

Figure 7.6 Hex flower diagram plotting the complexity of listing 7.2.
Two empty ‘registers’ illustrate extra capacity of your short-term

memory. In other words, the code fits in your brain.

Three fine-grained chunks have been replaced with a single slightly larger
chunk.

“Short-term memory is measured in chunks [...] because each item can be a label that points to a
much bigger information structure in long-term memory” [80]

The key to such replacement is the ability to replace many things with one
thing. You can do that if you can abstract the essence of the thing. Does that
sound familiar?

That’s Robert C. Martin’s definition of abstraction:

“Abstraction is the elimination of the irrelevant and the amplification of the essential” [60]

The IsValid method amplifies that it validates a Data Transfer Object
while it eliminates the exact details about how it does that. We can draw
another hexagonal short-term memory layout for it (figure 7.7).

Figure 7.7 Hex flower diagram plotting the complexity of listing 7.1.

When you look at the code for IsValid you don’t have to know anything
about the surrounding context. The calling code doesn’t influence the
IsValid method, beyond passing an argument to it. Both IsValid and Post
fit in your brain.

7.2.3 Feature Envy
While complexity decreased with the above refactoring, the change
introduced other problems.

The most evident problem is the code smell that the IsValid method is
static

8.Ittakesa ReservationDto parameter, but uses no instance members
of the ReservationsController class. That’s a case of the Feature Envy
[34] code smell. As Refactoring [34] suggests, try moving the method to the
object it seems ‘envious’ of.

8. It’s not always a problem that a method is static, but in object-oriented design, it could be. It’s
worthwhile paying attention to your use of static.

Listing 7.3 shows the method moved to the ReservationDto class. For now
I decided to keep it internal, but I might consider changing that decision
later.

Listing 7.3 IsValid method moved to the ReservationDto class.
(Restaurant/0551970/Restaurant.RestApi/ReservationDto.cs)
Click here to view code image

internal bool IsValid

{

 get

 {

 return DateTime.TryParse(At, out _)

 && !(Email is null)

 && 0 < Quantity;

 }

}

I also chose to implement the member as a property9 instead of a method.
The previous method was ‘envious’ of the features of ReservationDto, but
now that the member is a part of that class, it needs no further parameters. It
could have been a method that took no input, but in this case a property
seems like a better choice.

9. A property is just C# syntactic sugar for a ‘getter’ (and/or ‘setter’) method.

It’s a simple operation without preconditions, and it can’t throw exceptions.
That fits the .NET framework guidelines’ rules for property getters [23].

Listing 7.4 shows the part of the Post method where it checks whether the
dto is valid.

Listing 7.4 Code fragment from the Post method. This is where it calls the
IsValid method shown in listing 7.3.
(Restaurant/0551970/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

if (!dto.IsValid)

 return new BadRequestResult();

All tests pass. Don’t forget to commit the changes to Git and push them
through your deployment pipeline [49].

7.2.4 Lost in Translation
Even a small block of code can exhibit multiple problems. Fixing one issue
doesn’t guarantee that there are no more of them. That’s the case with the
Post method.

The C# compiler can no longer see that At and Email are guaranteed to be
non-null. We have to tell it to turn off its static flow analysis for these
references with the null-forgiving ! operator. Otherwise, the code doesn’t
compile. You’re essentially suppressing the nullable-reference-types
compiler feature. That’s not a step in the right direction.

Another problem with listing 7.2 is that it effectively parses the At property
twice—once in the IsValid method, and once again in the Post method.

It seems that too much is lost in the translation. It turns out that, after all,
IsValid isn’t a good abstraction. It eliminates too much and amplifies too
little.

This is a typical problem with object-oriented validation. A member like
IsValid produces a Boolean flag, but not all the information that
downstream code might need—for example the parsed date. This compels
other code to repeat the validation. The result is code duplication.

A better alternative is to capture the validated data. How do you represent
validated data?

Recall the discussion about encapsulation in chapter 5. Objects should
protect their invariants. That includes pre- and postconditions. A properly
initialised object is guaranteed to be in a valid state—if it’s not,
encapsulation is broken because the constructor failed to check a
precondition.

This is the motivation for a Domain Model. The classes that model the
domain should capture its invariants. This is in contrast to Data Transfer
Objects that model the messy interactions with the rest of the world.

In the restaurant reservation system, the domain model of a valid
reservation already exists. It’s the Reservation class, last glimpsed in
listing 5.13. Return such an object instead.

7.2.5 Parse, Don’t Validate
Instead of an IsValid member that returns a Boolean value, translate Data
Transfer Objects [33] to domain objects if the preconditions hold. Listing
7.5 shows an example.

Listing 7.5 The Validate method returns an encapsulated object.
(Restaurant/a0c39e2/Restaurant.RestApi/ReservationDto.cs)

Click here to view code image

internal Reservation? Validate()

{

 if (!DateTime.TryParse(At, out var d))

 return null;

 if (Email is null)

 return null;

 if (Quantity < 1)

 return null;

 return new Reservation(d, Email, Name ?? "", Quantity);

}

The Validate method uses Guard Clauses [7] to check the preconditions of
the Reservation class. This includes parsing the At string into a proper
DateTime value. Only if all preconditions are fulfilled does it return a
Reservation object. Otherwise, it returns null.

Maybe

Notice the method signature of the Validate method:

internal Reservation? Validate()

The method’s name and type is the first you see when you read code
with which you’re unfamiliar. If you can capture the essence of a
method in the signature, then that’s a good abstraction.

The Validate method’s return type carries important information.
Recall that the question mark indicates that the object may be null.
That’s important information when you’re writing code calling the
method. Not only that, but with C#’s nullable reference types feature
turned on, the compiler is going to complain if you forget to handle
the null case.

This is a relatively new feature in the realm of object-oriented
languages. In previous versions of C# all objects could always be null.

The same is still true for other object-oriented languages such as Java.

On the other hand, some languages (e.g. Haskell) have no null
references, or go to great lengths to pretend that they don’t exist (F#).

You can still model the presence and absence of values in these
languages. You do that explicitly with a type called Maybe (in Haskell)
or Option (in F#). You can easily port this notion to earlier versions of
C# or other object-oriented languages. All you need is polymorphism
and (preferably) generics [94].

If you did that, you could instead model the Validate method like
this:

internal Maybe<Reservation> Validate()

The way the Maybe API works, callers would be forced to handle
both cases: no reservation or exactly one reservation. Prior to C# 8’s
nullable reference types I’ve taught organisations to use Maybe
objects instead of null. Developers quickly learn how much safer it
makes their code.

If you can’t use the nullable reference types feature of C#, declare null
references to be illegal return values and use the Maybe container
instead, when you want to indicate that a return value could be
missing.

The calling code has to check whether the return value is null and act
accordingly. Listing 7.6 shows how the Post method handles a null value.

Listing 7.6 The Post method calls the Validate method on the dto and
branches on whether or not the returned value is null.
(Restaurant/a0c39e2/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 Reservation? r = dto.Validate();

 if (r is null)

 return new BadRequestResult();

 var reservations = await Repository

 .ReadReservations(r.At)

 .ConfigureAwait(false);

 int reservedSeats = reservations.Sum(r => r.Quantity);

 if (10 < reservedSeats + r.Quantity)

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 await Repository.Create(r).ConfigureAwait(false);

 return new NoContentResult();

}

Notice that this solves all the problems introduced by the static IsValid
method shown in listing 7.1.The Post method doesn’t have to suppress the
compiler’s static flow analyser, and it doesn’t have to duplicate parsing the
date.

The Post method’s cyclomatic complexity is now down to 4. This fits in
your brain, as figure 7.8 illustrates.

The Validate method is a better abstraction because it amplifies the
essentials: does dto represent a valid reservation? It does that by projecting
the input data into a stronger representation of the same data.

Alexis King calls this technique parse, don’t validate.

“Consider: what is a parser? Really, a parser is just a function that consumes less-structured input
and produces more-structured output. By its very nature, a parser is a partial function – some
values in the domain do not correspond to any value in the range – so all parsers must have some
notion of failure. Often, the input to a parser is text, but this is by no means a requirement” [54]

Figure 7.8 Hex flower diagram for the Post method shown in listing
7.6.

The Validate method is actually a parser: it takes the less-structured
ReservationDto as input and produces the more-structured Reservation as
output. Perhaps the Validate method ought to be named Parse,butIwas
concerned it might confuse readers with more narrow views on parsing.

7.2.6 Fractal Architecture
Consider a diagram like figure 7.8 that depicts the Post method. Only four
of the seven slots are occupied by chunks.

You know, however, that the chunk representing the Validate method
amplifies the essentials while it eliminates some complexity. While you
don’t have to think about the complexity hidden by the chunk, it’s still
there, as suggested by figure 7.9.

You can zoom in on the Validate chunk. Figure 7.10 shows that the
structure is the same.

Figure 7.9 Hex flower hinting that each chunk can hide other
complexity.

Figure 7.10 Hex flower for the Validate method shown in listing 7.5.

The cyclomatic complexity of the Validate method is 5, so if you use that
as a yardstick for complexity, it makes sense to fill out five of the seven

slots with chunks.

By now you’ll have noticed that when you zoom in on a detail, it has the
same hex flower shape as the caller. What happens if you zoom out?

The Post method doesn’t have any direct callers. The ASP.NET framework
calls Controller methods based on the configuration in the Startup class.
How does that class measure up?

It hasn’t changed since listing 4.20. The cyclomatic complexity of the entire
class is as low as 5. You can easily plot it in the a hex flower like figure
7.11.

Figure 7.11 All complexity elements of the Startup class. Most class
members have a cyclomatic complexity of 1, so they take up only one
hexagon. The Configure method has a cyclomatic complexity of 2, so it
takes up two hexagons: one where IsDevelopment is true, and one
where it’s false.

Even the overall definition of the application fits in your brain. It should
stay that way.

Imagine that you’re a new team member, and this is the first time you’re
looking at the code base. A good place to start, if you’re trying to
understand how the application works, is the entry point. That’s the
Program class, which hasn’t changed since listing 2.4. If you know
ASP.NET you quickly realise that nothing unexpected is going on here. To
understand the application, you should look at the Startup class.

When you open the Startup class, you’re pleasantly surprised to learn that
it fits in your brain. From the Configure method you quickly learn that the
system uses ASP.NET’s standard Model View Controller [33] system, as
well as its regular routing engine.

From the ConfigureServices method you learn that the application reads a
connection string from its configuration system and uses it to register a
SqlReservationsRepository object with the framework’s Dependency
Injection Container [25]. This should suggest to you that the code uses
Dependency Injection and a relational database.

This is a high-level view of the system. You don’t learn any details, but you
learn where to look if you’re interested in details. If you want to know
about the database implementation, you can navigate to the
SqlReservationsRepository code. If you want to see how a particular
HTTP request is handled, you find the associated Controller class.

When you navigate to those parts of the code base, you also learn that each
class, or each method, fits in your brain at that level of abstraction. You can
diagram the chunks of the code in a ‘hex flower’, as you’ve repeatedly seen
throughout this chapter.

Regardless of the ‘zoom level’, the ‘complexity structure’ looks the same.
This quality is reminiscent of mathematical fractals, which made me name
this style of architecture fractal architecture. At all levels of abstraction, the
code should fit in your brain.

In contrast to mathematical fractals, you can’t keep zooming indefinitely in
a code base. Sooner or later, you’ll reach the highest level of resolution.
That’ll be methods that call none of your other code. For example, the

methods in the SqlReservationsRepository class (see e.g. listing 4.19)
don’t call any other user code.

Another way to illustrate this style of architecture is as a tree, with the leaf
nodes representing the highest level of resolution.

In general, you could illustrate an architecture that fits in your brain as a
fractal tree, like in figure 7.12. At the trunk, your brain can handle up to
seven chunks, represented by seven branches. At each branch, your brain
can again handle seven more branches, and so on. A mathematical fractal
tree is conceptually infinite, but when drawing it, you sooner or later have
to stop rendering the branches.

Figure 7.12 Seven-way fractal tree.

A fractal architecture is a way to organise code so that wherever you look, it
fits in your brain. Lower-level details should be represented as a single
abstract chunk, and higher-level details should be either irrelevant at that
level of zoom, or otherwise explicitly visible as method parameters or
injected dependencies. Keep in mind that what you see is all there is [51].

A fractal architecture doesn’t happen by itself. You have to explicitly
consider the complexity of each block of code you write. You can calculate
cyclomatic complexity, keep an eye on lines of code, or count the number
of variables involved in a method. Exactly how you evaluate complexity is
less important than keeping it low.

Chapter 16 takes you on a tour of the finished example code base. The
completed system is more complex than you’ve so far seen, but it still
meets the requirements of a fractal architecture.

7.2.7 Count the Variables
As implied above, you can get another perspective on complexity by
counting the number of variables in a method. I sometimes do that just to
get another view on things.

If you decide to do that, make sure that you count all the involved objects.
That includes local variables, method arguments, and class fields.

For example, the Post method in listing 7.6 involves five variables: dto, r,
reservations, Repository,and reservedSeats. Three of those are local
variables while dto is a parameter and Repository is a property (which is
backed by an implicit, auto-generated class field). That’s five things you
have to keep track of. Your brain can do that, so this is fine.

I mostly do this when I consider if it’s okay to add another parameter to a
method. Are four parameters too many? It sounds like four parameters are
well within the limit of seven, but if those four arguments interact with five
local variables and three class fields, then too much is probably going on.
One way out of such a situation is to introduce a Parameter Object [34].

Obviously, this type of complexity analysis doesn’t work with interfaces or
abstract methods, since there’s no implementation.

7.3 Conclusion
Code bases aren’t born as legacy code. They degrade over time. They
accumulate cruft so gradually that it’s difficult to notice.

High-quality code is like an unstable equilibrium, as pointed out by Brian
Foote and Joseph Yoder:

“Ironically, comprehensibility can work against an artifact’s preservation, by causing it to mutate
more rapidly than artifacts that are harder to understand [...] An object with a clear interface and
hard to understand internals may remain relatively intact.” [28]

You must actively prevent code from rotting. You can pay attention by
measuring various metrics, such as lines of code, cyclomatic complexity, or
just counting the variables.

I’ve no illusions about the universality of these metrics. They can be useful
guides, but ultimately, you must use your own judgement. I find, however,
that monitoring metrics like these can raise awareness of code rot.

When you combine metrics with aggressive thresholds, you establish a
culture that actively pays attention to code quality. This tells you when to
decompose a code block into smaller components.

Complexity metrics don’t tell you which parts to decompose. This is a big
subject that’s already covered by many other books [60][27][34], but a few
things to look for are cohesion, Feature Envy, and validation.

You should aim for an architecture of your code base so that regardless of
where you look, the code fits in your head. At a high level, there’s seven or
fewer things going on. In the low-level code, there’s at most seven things
you have to keep track of. At the intermediary level, this still holds.

At every zoom level, the complexity of the code remains within humane
bounds. This self-similarity at different levels of resolution looks enough

like fractals that I call this fractal architecture.

It doesn’t happen by itself, but if you can achieve it, the code is orders of
magnitude easier to understand than legacy code because it’ll mostly
involve your short-term memory.

In chapter 16 you get a tour of the ‘completed’ code base, so that you can
see how the concept of fractal architecture plays out in a realistic setting.

8 API Design

When a block of code grows too complex, you should decompose it, as
implied by figure 8.1. Chapter 7 discussed where to take things apart. In this
chapter, you’ll learn how to design the new parts.

Figure 8.1 Decompose a block of code into smaller blocks when it
becomes too complex. How should the new blocks look? You’ll learn
some principles of API design in this chapter.

You can decompose code in many ways. There isn’t a single correct way to
do it, but there are more wrong ways than good ways. Staying on the
narrow path of good API design requires skill and taste. Fortunately, the
skill can be learned. Congruent with the theme of this book, you can apply
heuristics to API design, as you will see in this chapter.

8.1 Principles of API Design
The acronym API means Application Programming Interface, that is: an
interface against which you can write client code. You have to be careful
with these words, because their meanings are overloaded.

8.1.1 Affordance

How do you understand the word interface? You might think of it as a
language keyword, as in listing 6.5. In the context of APIs, we use it in a
broader sense. An interface is an affordance. It’s the set of methods, values,
functions, and objects you have at your disposal to interact with some other
code. With good encapsulation, the interface is the set of operations that
preserve the invariants of the objects involved. In other words, the
operations guarantee that the object states are all valid.

An API enables you to interact with an encapsulated package of code, just
like a door handle enables you to interact with a door. Donald A. Norman
uses the term affordance to describe such a relationship.

“The term affordance refers to the relationship between a physical object and a person (or for that
matter, any interacting agent, whether animal or human, or even machines and robots). An
affordance is a relationship between the properties of an object and the capabilities of the agent
that determine just how the object could possibly be used. A chair affords (“is for”) support and,
therefore, affords sitting. Most chairs can also be carried by a single person (they afford lifting),
but some can only be lifted by a strong person or by a team of people. If young or relatively weak
people cannot lift a chair, then for these people, the chair does not have that affordance, it does not
afford lifting.” [71]

I find that this notion translates well to API design. An API like
IReservationsRepository in listing 6.5 affords reading reservations
related to a certain date, as well as adding a new reservation. You can only
call the methods if you can supply the required input arguments. The
relationship between client code and an API is akin to the relationship
between caller and a properly encapsulated object. The object only affords
its capabilities to client code that fulfils the required preconditions. If you
have no Reservation, you can’t call the Create method.

As Norman also writes:

“Every day we encounter thousands of objects, many of them new to us. Many of the new objects
are similar to ones we already know, but many are unique, yet we manage quite well. How do we
do this? Why is it that when we encounter many unusual natural objects, we know how to interact
with them? Why is this true with many of the artificial human-made objects we encounter? The
answer lies with a few basic principles. Some of the most important of these principles come from
a consideration of affordances.” [71]

When you encounter a chair for the first time, it’s clear from the shape how
you can use it. Office chairs come with extra capabilities: you can adjust
their height, and so on. With some models, you can easily find the

appropriate lever, while with other models, this is harder. All the levers look
the same, and the one you thought would adjust the height instead adjusts
the seat angle.

How does a an API advertise its affordances? When you’re working with a
compiled statically typed language, you can use the type system.
Development environments can use type information to display the
operations available on a given object, as you’re typing, as shown in figure
8.2.

Figure 8.2 An IDE can show available methods on an object as you
type. In Visual Studio this is called IntelliSense.

This offers a degree of discoverability called dot-driven development1,
because once you type the dot (period) after an object, you’re presented
with a selection of methods you can call.

1. I first heard this term in a talk by Phil Trelford at the 2012 GOTO Copenhagen conference. I’ve
found no earlier definition of the term.

8.1.2 Poka-Yoke
A common error is to design a Swiss Army knife. I’ve met many
developers who think that a good API is one that enables as many activities
as possible. Like a Swiss Army knife, such an API may collect many
capabilities in one place, but none are as fit for their purpose as a
specialised tool (figure 8.3). At the end of this design road lies the God
Class2.

2. God Class [15] is an antipattern that describes classes with dozens of members implemented in
thousands of lines of code in a single file.

Figure 8.3 A Swiss Army knife can be handy in a bind, but is no
substitute for proper tools. Figures not to scale.

Good interface design considers not only what’s possible, but also what
should be deliberately impossible—the affordances. The members exposed
by an API advertise its capabilities, but the operations not supplied
communicate what you’re not supposed to do.

Design APIs so that it’s difficult to misuse them. An important concept in
lean software development is to build quality in [82]—that is, mistake-proof
both your artefacts and processes, instead of waiting until the end to detect
and fix defects. In lean manufacturing this is known by the Japanese word

poka-yoke, which means mistake-proofing. It translates well to software
engineering [1].

Poka-yoke comes in two flavours: active and passive. Active mistake-
proofing involves inspecting new artefacts as soon as they come into being.
Test-driven development is the prime example [1]. You should run
automated tests all the time.

I am, however, particularly enamoured with the notion of passive mistake-
proofing. In the physical world you can find many examples of this. Cable
connectors such as USB and HDMI can only be inserted the correct way.
Height restriction barriers, as in figure 8.4, warn drivers that their vehicle is
not going to fit. Such systems require no active inspection to work.

Figure 8.4 A height restriction barrier. Light-weight bars hang from
chains. A truck too tall for what’s up ahead will first hit these bars, with
much noise but little damage.

Likewise, design APIs so that they make illegal states unrepresentable [69].
If a state is invalid, it’s best to design the API so that it’s impossible to
express it in code. Capture the absence of a capability in the API’s design,
so that something that should be impossible doesn’t even compile3. A
compiler error gives you faster feedback than a runtime exception [99].

3. This is trivial to do in programming languages with sum types. These include Haskell and F#. In
object-oriented design, the direct equivalent is the more verbose Visitor design pattern [107].

8.1.3 Write for Readers
If you recall your school days, you probably remember writing essays. Your
teacher insisted that you should consider the context, sender, receiver, and
so on. Recall that the sender is the person who ostensibly ‘writes’ the text,
and the receiver is the person who reads it. Your teacher instructed you to
explicitly consider the relationship between sender and receiver.

I’ve met more than one software developer who recall those days with
loathing; who are happy that they are now programmers, literary analysis
far behind them.

I’ve got bad news for you.

All this is still relevant in your professional life. There’s a reason schools
teach these skills. Sender and receiver matter when you compose an email.
That relationship matters when you write documentation. And it matters
when you write code.

Code is read more than it’s written.

Write code for future readers. It may be yourself.

8.1.4 Favour Well-Named Code over Comments
You’ve probably heard that you should write clean code instead of
comments [61]. Comments may deteriorate as the code evolves around

them. What was once a correct comment becomes misleading as time
passes. Ultimately, the only artefact you can trust is the code. Not the
comments in the code, but the actual instructions and expressions that are
compiled to working software. Listing 8.1 shows a typical example.

Listing 8.1 A comment explaining the intent of code. Don’t do that.
Replace it with a well-named method, as shown in listing 8.2.
(Restaurant/81b3348/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

// Reject reservation if it's outside of opening hours

if (candidate.At.TimeOfDay < OpensAt ||

 LastSeating < candidate.At.TimeOfDay)

 return false;

If possible, replace the comment with a method with a helpful name [61], as
in listing 8.2.

Listing 8.2 A method call replaces a comment. Compare with listing 8.1.
(Restaurant/f3cd960/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

if (IsOutsideOfOpeningHours(candidate))

 return false;

Not all comments are bad [61], but favour well-named methods over
comments.

8.1.5 X Out Names
Don’t rest on your laurels, though. Just as comments can grow stale and
misleading over time, so can method names. Hopefully you pay more
attention to method names than comments, but it still happens that someone
changes the implementation of a method, but forgets to update the name.

Fortunately, with a statically typed language, you can use types to keep you
honest. Design APIs so that they advertise their contracts with types.
Consider the updated version of IReservationsRepository showninlisting
8.3.Ithas a third method named ReadReservation. It’s a descriptive name,
but is it sufficiently self-documenting?

One question I often find myself asking when I explore an unfamiliar API
is: Should I check the return value for null? How do you communicate that
in a durable and consistent way?

You could try to communicate with descriptive naming. For example, you
might call the method GetReservationOrNull. This works, but is
vulnerable to changes in behaviour. You might later decide to change the
API design so that null is no longer a valid return value, but forget to
change the name.

Listing 8.3 IReservationsRepository with an additional
ReadReservation method compared to listing 6.5.
(Restaurant/ee3c786/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create (Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime dateTime);

 Task<Reservation?> ReadReservation(Guid id); }

Notice, however, that with C#’s nullable reference types feature, that
information is already included in the method’s type signature4. Its return
type is Task<Reservation?>. Recall that the question mark indicates that
the Reservation object could be null.

4. If your language doesn’t make the distinction between nullable and non-nullable reference types
explicit, you can instead adopt the Maybe concept described on page 145. In that case, the
signature of the ReadReservation method would be Task<Maybe<Reservation>>
ReadReservation(Guid id).

As an exercise in API design, try to x out the method names and see if you
can still figure out what they do:

Click here to view code image

public interface IReservationsRepository

{

 Task Xxx(Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> Xxx(DateTime

dateTime);

 Task<Reservation?> Xxx(Guid id);

}

What does it look like Task Xxx(Reservation reservation) does? It
takes a Reservation object as input, but it doesn’t return anything5. Since
there’s no return value, it must perform some sort of side effect. What might
it be?

5. Strictly speaking, it returns a Task, but that object contains no additional data. Regard Task as the
asynchronous equivalent of void.

It could be that it saves the reservation. It might also conceivably transform
it to an email and send it. It could log the information. This is where the
defining object comes into play. When you know that the object that defines
the method is called IReservationsRepository, the implied context is one
of persistence. This enables you to eliminate logging and emailing as
alternatives.

Still, it’s not clear whether that method creates a new row in the database,
or it updates an existing one. It might even do both. It’s also technically
possible that it deletes a row, although a better candidate signature for a
delete operation would be Task Xxx(Guid id).

What about Task<IReadOnlyCollection<Reservation>> Xxx(DateTime
dateTime)? This method takes a date as input and returns a collection of
reservations as output. It doesn’t take much imagination to guess that this is
a date-based query.

Finally, Task<Reservation?> Xxx(Guid id) takes an ID as input, and may
or may not return a single reservation. That’s unambiguously an ID-based

lookup.

This technique works as long as objects afford only few interactions. The
example has only three members, and they all have different types. When
you combine method signatures with the name of the class or interface, you
can often guess what a method does.

Notice, though, how it took more guesswork to reason about the
anonymised Create method. Since there’s effectively no return type, you
have to reason about its intent based exclusively on the input type. With the
queries, you have both input types and output types to hint at the method’s
intent.

X’ing out method names can be a useful exercise, because it helps you
empathise with future readers of your code. You may think that the method
name you just coined is descriptive and helpful, but it may not be to
someone with a different context.

Names are still helpful, but you don’t have to repeat what the types already
state. This gives you room to tell the reader something he or she can’t
divine from the types.

Notice the importance of keeping the tools sharp, so to speak. This is
another reason to favour specialised APIs over Swiss Army knives. When
an object only exposes three or four methods, each method tends to have a
type distinct from the other methods in that context. When you have dozens
of methods on the same object, this is less likely to work well.

The method types are most likely to be helpful when the types alone
disambiguate them from each other. If all methods return string or int,
their types are less likely to be helpful. That’s another reason to eschew
stringly typed [3]APIs.

8.1.6 Command Query Separation
When you X out names, the role that static types can play comes into focus.
Consider a method signature like void Xxx(). This tells you hardly

anything about what the method does. All you can say is that it must have
some sort of side effect, because it doesn’t return anything, and what other
reason for existence could it have?

Clearly, if you give the method a name, it’s easier to guess what it does. It
might be void MoveToNextHoliday() or void Repaint(). The possibilities
are endless.

With a method structure like void Xxx(), the only way you can
communicate with the reader is by choosing a good name. As you add
types, you get more design options. Consider a signature like void
Xxx(Email x). It’s still not clear exactly what’s being done to the Email
argument, but some side effect must be involved. What could it be?

An obvious side effect involving an email is to send it. It’s hardly
unambiguous, though. The method might also delete the email.

What’s a side effect? It’s when a procedure changes the state of something.
This could be a local effect, like changing the state of an object, or a global
effect, like changing the state of the application as a whole. This could
include deleting a row from a database, editing a file on disk, repainting a
graphical user interface, or sending an email.

The goal of good API design is to factor code so that it fits in our brains.
Recall that the purpose of encapsulation is to hide implementation details.
Thus, the code that implements a method could make use of local state
changes, and you shouldn’t regard those as side effects. Consider the helper
method shown in listing 8.4.

Listing 8.4 A method with local state change, but no observable side
effects. (Restaurant/9c134dc/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

private IEnumerable<Table> Allocate(

 IEnumerable<Reservation> reservations)

{

 List<Table> availableTables = Tables.ToList();

 foreach (var r in reservations)

 {

 var table = availableTables.Find(t =>

t.Fits(r.Quantity));

 if (table is { })

 { availableTables.Remove(table);

 if (table.IsCommunal)

 availableTables.Add(table.Reserve(r.Quantity));

 }

 }

 return availableTables;

}

This method creates the local variable availableTables, which it then
proceeds to modify before returning it. You might think that this counts as a
side effect because the state of availableTables changes. On the other
hand, the Allocate method doesn’t change the state of the object that
defines it, and it returns availableTables as a read-only collection6.

6. IEnumerable<T> is the standard .NET implementation of the Iterator [39] design pattern.

When you write code that calls the Allocate method, all you need to know
is that if you supply it a collection of reservations, you receive a collection
of tables. As far as you’re concerned, there’s no side effect that you can
observe.

Methods with side effects should return no data. In other words, their return
type should be void. That makes it trivial to recognise them. When you see
a method that returns no data, you know that its raison d’être is to carry out
a side effect. Such methods are called Commands [67].

To distinguish between procedures with and without side effects, then,
methods that do return data should have no side effects. Thus, when you see
a method signature like IEnumerable<Table>
Allocate(IEnumerable<Reservation> reservations), you ought to
realise that it has no side effects because it has a return type. Such methods
are called Queries [67]7.

7. Careful: a Query doesn’t have to be a database query, although it can be. The distinction between
Commands and Queries was made by Bertrand Meyer in or before 1988 [67]. At that time,

relational databases weren’t as pervasive as they are now, so the term query didn’t come with as
strong an association to database operations as may be the case today.

It’s much easier to reason about APIs if you keep Commands and Queries
separate. Don’t return data from methods with side effects, and don’t cause
side effects from methods that return data. If you follow that rule, you can
distinguish between these two types of functions without having to read the
implementation code.

This is known as Command Query Separation (CQS8). As most other
techniques in this book, this isn’t something that just happens automatically.
The compiler doesn’t need or enforce this rule9, so it’s your responsibility.
You could make a checklist out of this rule, if need be.

8. Be careful to not confuse CQS with CQRS (Command Query Responsibility Segregation). This is
an architectural style that takes its terminology from CQS (hence the acronym resemblance), but
takes the notion much further.

As you saw in subsection 8.1.5, it’s easier to reason about Queries than it is
to reason about Commands, so favour Queries over Commands.

9. Unless the compiler is the Haskell or PureScript compiler.

To be clear, it’s trivially technically possible to write a method that both has
a side effect and returns data. That’s neither a Command nor a Query. The
compiler doesn’t care, but when you follow Command Query Separation,
this combination isn’t legal. You can always apply this principle, but it may
require some practice before you figure out how to deal with various knotty
situations10.

10. The thorniest problem people commonly run into is how to add a row to a database and return the
generated ID to the caller. This, too, can be solved with adherence to CQS [95].

8.1.7 Hierarchy of Communication
Just as comments can grow stale, so can names. It seems that there’s a
generalisable rule:

Don’t say anything with a comment that you can say with a method
name. Don’t say anything with a method name you can say with a
type.

In priority, from most important to least important:

1. Guide the reader by giving APIs distinct types.

2. Guide the reader by giving methods helpful names.

3. Guide the reader by writing good comments.

4. Guide the reader by providing illustrative examples as automated tests.

5. Guide the reader by writing helpful commit messages in Git.

6. Guide the reader by writing good documentation.

The types are part of the compilation process. If you make a mistake with
the types of your API, your code will likely not compile. None of the other
alternatives for communicating with the reader has that quality.

Good method names are still part of the code base. You look at those every
day. They’re also a good way to communicate your intent to the reader.

There are matters that you can’t easily communicate with good naming.
These may include the reason you decide to write the implementation code
in a particular way. That’s still a legitimate reason to include a comment
[61].

Likewise, there are considerations that relate to a particular change you
make to the code. These should be documented as commit messages.

Finally, a few high-level questions are best answered by documentation.
These include how to set up the development environment, or the overall
mission of the code base. You can document such things in a readme file or
another kind of documentation.

Notice that while I don’t dismiss old-fashioned documentation, I consider it
the least effective way to communicate with other developers. The code
never grows stale. By definition, this is the only artefact that is always
current. Everything else (names, comments, documentation) easily
stagnates.

8.2 API Design Example
How do you apply such API design principles to code? What does it look
like when used to solve a nontrivial problem? You’ll see an example in this
section.

The logic so far implemented in ReservationsController is trivial.
Consider listing 7.6. The restaurant has a hard-coded capacity of ten seats.
The decision rule doesn’t take into account the size of each party of guests,
so the implication is that all guests are seated at the same table. A typical
configuration at hipster restaurants is bar-style seating with a view to the
kitchen.

The logic in listing 7.6 also doesn’t take into account the time of day of the
reservation. The implication is that there’s only a single seating per day.

Granted, I’ve dined at restaurants like that, but they are rare. Most places
have more than one table, and they may have second seatings. This is when
guests are allotted a given duration to finish their meal. If you’ve made a
reservation for 18:30, someone else may have a reservation for your table

for 21:00. You have hours to finish your meal.

The reservation system should also take opening hours into account. If the
restaurant opens at 18:00, a reservation for 17:30 should be rejected.
Likewise, the system should reject reservations in the past.

All of that (table configurations, second seatings, and opening hours)
should be configurable. These requirements clearly are complex enough
that you’ll have to factor the code to stay within the constraints suggested in

this book. The cyclomatic complexity should be seven or less, the methods
shouldn’t be too big, or involve too many variables.

You’ll need to delegate that business decision to a separate object.

8.2.1 Maître D’
Only two lines of code in listing 7.6 handle the business logic. These two
lines of code are repeated in listing 8.5 for clarity.

Listing 8.5 The only two lines of code from listing 7.6 that actually make a
business decision.
(Restaurant/a0c39e2/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

int reservedSeats = reservations.Sum(r => r.Quantity);

if (10 < reservedSeats + r.Quantity)

With the new requirements, the decision is going to be significantly more
complex. It makes sense to define a Domain Model [33]. What should you
call the class? If you want to adopt a ubiquitous language [26] that the
domain experts already speak, you could call it maître d’. In formal
restaurants, the maître d’hôtel is the head waiter who oversees the guest
area of a restaurant (as opposed to the chef de cuisine, who manages the
kitchen).

Taking reservations and assigning tables is among a maître d’s
responsibilities. Adding a MaitreD class sounds like proper domain-driven
design [26].

Contrary to previous chapters, I’ll skip the iterative development to instead
show you the results. If you’re interested in the unit tests I wrote, and the
small steps I took, they’re all visible as commits in the Git repository that
accompanies the book. You can see the MaitreD API I arrived at in listings

8.6 and 8.7. Take a moment to consider them. Which conclusions do you
arrive at?

Listings 8.6 and 8.7 only show the publicly visible API. I’ve hidden the
implementation code from you. This is the point of encapsulation. You
should be able to interact with MaitreD objects without knowing
implementation details. Can you?

Listing 8.6 The MaitreD constructor. Another overload that takes a params
array also exists. (Restaurant/62f3a56/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

public MaitreD(

 TimeOfDay opensAt,

 TimeOfDay lastSeating,

 TimeSpan seatingDuration,

 IEnumerable<Table> tables)

Listing 8.7 Signature of the WillAccept instance method on MaitreD.
(Restaurant/62f3a56/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

public bool WillAccept(

 DateTime now,

 IEnumerable<Reservation> existingReservations,

 Reservation candidate)

How does one create a new MaitreD object? If you start typing new
MaitreD(, as soon as you type the left bracket, your IDE will display what
is needed in order to continue, as shown in figure 8.5. You’ll need to supply
opensAt, lastSeating, seatingDuration,and tables arguments. All are
required. None can be null.

Figure 8.5 IDE displaying the requirements of a constructor, based on
static type information.

Can you figure out what to do here? What should you put in place of
opensAt? A TimeOfDay value is required. This is a custom type created for
the purpose, but I hope that I made a good job naming it. If you wonder
how to create instances of TimeOfDay, you can look at its public API. The
lastSeating parameter works the same way.

Can you figure out what seatingDuration is for? I hope that this, too, is
sufficiently self-explanatory.

What do you think the tables parameter is for? You’ve never seen the
Table class before, so you’ll have to learn the public API of that class as
well. I’m going to skip further exegesis. The point isn’t that I should talk
you through the API. The point is to give you a sense for how to reason
about an API.

You can put the WillAccept method in listing 8.7 through the same kind of
analysis. If I’ve done my job well, it should be clear how to interact with it.
If you give it the arguments it requires, it’ll tell you whether it will accept
the candidate reservation.

Does the method perform any side effects? It returns a value, so it looks like
a Query. According to Command Query Separation, then, it must have no
side effects. This is indeed the case. This means that you can call the
method without worrying about what’s going to happen. The only thing
that’s going to happen is that it’ll use some CPU cycles and return a
Boolean value.

8.2.2 Interacting with an Encapsulated Object
You should be able to interact with a well-designed API without knowing
the implementation details. Can you do that with a MaitreD object?

The WillAccept method requires three arguments. Refer to the method
signature in listing 8.7. You’ll need a valid instance of the MaitreD class, as
well as a DateTime representing now, a collection of
existingReservations, and the candidate reservation.

Assuming that the ReservationsController already has a valid MaitreD
object, you can replace the two lines of code in listing 8.5 with a single call
to WillAccept, as shown in listing 8.8. Despite the increased complexity of
the total system, the size and complexity of the Post method remains low.
All the new behaviour is in the MaitreD class.

Listing 8.8 You can replace the two lines of business logic shown in listing
8.5 with a single call to WillAccept.
(Restaurant/62f3a56/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))

The Post method of ReservationsController uses DateTime.Now to
supply the now argument. It already has a collection of existing
reservations from its injected Repository as well as the validated
candidate reservation r (see listing 7.6). The conditional expression uses a
Boolean negation (!) so that the Post method rejects the reservation when
WillAccept returns false.

How is the MaitreD object in listing 8.8 defined? It’s a read-only property
initialised via the ReservationsController constructor, shown in listing
8.9.

Listing 8.9 ReservationsController constructor.
(Restaurant/62f3a56/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public ReservationsController(

 IReservationsRepository repository,

 MaitreD maitreD)

{

 Repository = repository;

 MaitreD = maitreD;

}

public IReservationsRepository Repository { get; }

public MaitreD MaitreD { get; }

This looks like Constructor Injection [25], apart from the fact that MaitreD
isn’t a polymorphic dependency. Why did I decide to do it that way? Is it a
good idea to take a formal dependency on MaitreD? Isn’t it just an
implementation detail?

Consider the alternative: pass all configuration values one-by-one via
ReservationsController’s constructor, as you can see in listing 8.10.

This seems like an odd design. Granted, ReservationsController no
longer has an publicly visible dependency on MaitreD, but it’s still there. If
you change the constructor of MaitreD, you’ll also have to change the
constructor of ReservationsController. The design choice shown in
listing 8.9 causes less maintenance overhead, because if you change the
MaitreD constructor, you only have to edit the places where the injected
MaitreD object is created.

Listing 8.10 ReservationsController constructor with exploded
configuration values for MaitreD. Compared to listing 8.9 this doesn’t seem
like a better alternative.
(Restaurant/0bb8068/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public ReservationsController(

 IReservationsRepository repository,

 TimeOfDay opensAt,

 TimeOfDay lastSeating,

 TimeSpan seatingDuration,

 IEnumerable<Table> tables)

{

 Repository = repository;

 MaitreD =

 new MaitreD(opensAt, lastSeating, seatingDuration,

tables);

}

This happens in the Startup class’ ConfigureServices method, as shown
in listing 8.11. MaitreD is an immutable class; once created, it can’t change.
This is by design. One of the many benefits of such a stateless service is
that it’s thread-safe, so that you can register it with Singleton lifetime [25].

Listing 8.11 Load restaurant settings from the application configuration and
register a MaitreD object containing those values. The ToMaitreD method is
shown in listing 8.12. (Restaurant/62f3a56/Restaurant.RestApi/Startup.cs)
Click here to view code image

var settings = new Settings.RestaurantSettings();

Configuration.Bind("Restaurant", settings);

services.AddSingleton(settings.ToMaitreD());

You can see the ToMaitreD method in listing 8.12.The OpensAt,
LastSeating, SeatingDuration,and Tables properties belong to a
RestaurantSettings object with poor encapsulation. Due to the way
ASP.NET’s configuration system works, you’re expected to define
configuration objects in such a way that they can be populated with values
read from a file. In a sense, such objects are like Data Transfer Objects [33]
(DTOs).

Contrary to DTOs that arrive as JSON documents while the service is
running, there’s little you can do if parsing of configuration values fails. In
that case, the application can’t start. For that reason, the ToMaitreD method
doesn’t check the values it passes to the MaitreD constructor. If the values
are invalid, the constructor will throw an exception and the application will
crash, leaving a log entry on the server.

Listing 8.12 The ToMaitreD method converts values read from the
application configuration to a MaitreD object.
(Restaurant/62f3a56/Restaurant.RestApi/Settings/RestaurantSettings.cs)

Click here to view code image

internal MaitreD ToMaitreD()

{

 return new MaitreD(

 OpensAt,

 LastSeating,

 SeatingDuration,

 Tables.Select(ts => ts.ToTable()));

}

8.2.3 Implementation Details
It’s good to know that you can use a class like MaitreD without knowing all
of the implementation details. Sometimes, however, your task involves
changing the behaviour of an object. When that’s your task, you’ll need to
go a level deeper in the fractal architecture. You’ll have to read the code.

Listing 8.13 shows the WillAccept implementation. It stays within the
bounds of humane code. Its cyclomatic complexity is 5, it has 20 lines of
code, stays within 80 characters in width, and activates 7 objects.

It’s not the whole implementation. The way to stay within the bounds of
code that fits in your brain is to aggressively delegate pieces of the
implementation to other parts. Take a moment to look at the code and see if
you get the gist of it.

You’ve never seen the Seating class before. You don’t know what the Fits
method does. Still, hopefully you can get a sense of where to look next,
depending on your motivation for looking at the code. If you need to
change the way the method allocates tables, where would you look? If
there’s a bug in the seating overlap detection, where do you go next?

You could decide to look at the Allocate method. You’ve already seen it.
It’s in listing 8.4. When you look at that code, you can forget about the
WillAccept method. Looking at Allocate is another zoom-in operation in
the fractal architecture. Remember that what you see is all there is [51].
What you need to know should be right there in the code.

Listing 8.13 The WillAccept method.
(Restaurant/62f3a56/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

public bool WillAccept(

 DateTime now,

 IEnumerable<Reservation> existingReservations,

 Reservation candidate)

{

 if (existingReservations is null)

 throw new

ArgumentNullException(nameof(existingReservations));

 if (candidate is null)

 throw new ArgumentNullException(nameof(candidate));

 if (candidate.At < now)

 return false;

 if (IsOutsideOfOpeningHours(candidate))

 return false;

 var seating = new Seating(SeatingDuration, candidate);

 var relevantReservations =

 existingReservations.Where(seating.Overlaps);

 var availableTables = Allocate(relevantReservations);

 return availableTables.Any(t =>

t.Fits(candidate.Quantity));

}

The Allocate method does a good job of that. It activates six objects. Apart
from the object property Tables, all are declared and used inside the
method. This means that you don’t need to keep in your head any other
context that impacts how the method works. It fits in your brain.

It still delegates some of its implementation to other objects. It calls
Reserve on table, and the Fits method makes another appearance. If
you’re curious about the Fits method, you could go and look at that as
well. You can see it in listing 8.14.

It’s not even close to the limits of our brains’ capacity, but it still abstracts
two chunks (Seats and quantity) into one. It represents yet another zoom-
in operation in the fractal architecture. When you read the source code of
Fits, you only need to keep track of Seats and quantity. You don’t have

to care about the code that calls the Fits method in order to understand
how it works. It fits in your brain.

Listing 8.14 The Fits method. Seats is a read-only int property.
(Restaurant/62f3a56/Restaurant.RestApi/Table.cs)
Click here to view code image

internal bool Fits(int quantity)

{

 return quantity <= Seats;

}

I haven’t shown you the Reserve method, or the Seating class, but they
follow the same design principles. All implementations respect our
cognitive constraints. All are Queries. If you’re interested in these
implementation details, you can consult the Git repository that accompanies
the book.

8.3 Conclusion
Write code for readers. As Martin Fowler put it:

“Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.” [34]

Obviously, the code must result in working software, but that’s the low bar.
That’s what Fowler means by ‘code that a computer can understand.’ It’s
not a sufficiently high bar. For code to be sustainable, you must write it so
that humans understand it.

Encapsulation is an important part of this endeavour. It involves designing
APIs so that the implementation details are irrelevant. Recall Robert C.
Martin’s definition of abstraction:

“Abstraction is the elimination of the irrelevant and the amplification of the essential” [60]

The implementation details should stay irrelevant until you actually need to
change them. Thus, design APIs so that they afford reasoning about them
from the outside. This chapter covered some fundamental design principles
that help push API design in that direction.

9 Teamwork

When I was young, I loathed teamwork. I could usually complete school
assignments faster by working by myself than in a group. I felt that other
group members stole my thunder, and I resented having to argue for my
way of doing things when I ‘knew’ I was right.

I don’t think that I would have much liked my younger self.

Thinking back on it, I may have self-selected into a vocation that looked
promising to a person with limited interest in social interaction. I think I
have that in common with quite a few other programmers.

The bad news is that as a software developer, you rarely work alone.

You work in a software development team with other programmers, product
owners, managers, operations specialists, designers, etc. This is no different
from the ‘real’ engineers discussed in subsection 1.3.4. They also work in
teams.

A major part of being an engineer is to follow various processes. In this
chapter, you’ll learn about some beneficial processes for software
engineering. Use these processes to help yourself and your team mates
more readily understand the code.

A word of warning: Don’t confuse process with outcome. Like checklists,
following a processes improves the chance of success. The most important
part of any process, however, is to understand the underlying motivation for
it. When you understand why a particular process is beneficial, you know
when to follow it, and when to deviate from it. In the end, it’s the outcome
that matters.

Keep in mind, though, that outcomes can be positive or negative. As
discussed in subsection 3.1.2, it’s impractical to measure the direct

outcomes of your actions. They could have immediate positive effects now,
but net negative impact over six months. For example, technical debt
accrues over time.

A process works as a proxy for the actual effect you’re aiming for. It’s not a
guarantee that all will go well, but it helps.

9.1 Git
Most software development organisations now use Git instead of other
version control systems such as CVS or Subversion. Despite its distributed
nature, you typically use it with a centralised service such as GitHub, Azure
DevOps Services, Stash, GitLab, etc.

Such services come with additional capabilities like work item
management, statistics, or automatic backups. Managers often consider
these services essential, but don’t give the actual source control features
much thought.

Likewise, most software developers I’ve met think of Git as a way to
integrate their code with the rest of their team’s code base. They give little
thought to how they interact with it.

Used in this way, Git is almost an afterthought. That’s a wasted opportunity.
Use Git tactically.

9.1.1 Commit Messages
When you make a commit, you should write a commit message. For most
programmers, this is an obstacle to be cleared as easily as possible. You
have to write something, but while Git rejects empty commit messages, it’ll
accept anything else.

People typically write what’s in the commit, and then nothing more.
Examples include “FirstName Added”, “No empty saga”, or “Handle

CustomerUpdated Added”1. That’s not as helpful as it could be.

1. These are real, slightly anonymised examples.

Consider the hierarchy of communication described in subsection 8.1.7.
Anything you write and persist is a message to the future, for you and your
team members. On the other hand, focus on communication over writing.
You don’t have to spend much time explaining what changed in a commit.
The commit diff already contains that information.

Focus on communication over writing.

Believe it or not, a standard for Git commit messages exists. It’s known as
the 50/72 rule, and it’s not an official standard, but rather a de-facto
standard based on experience with the tool [81].

Write a summary in the imperative, no wider than 50 characters.

If you add more text, leave the second line blank.

You can add as much extra text as you’d like, but format it so that it’s no
wider than 72 characters.

These rules are based on how various Git features work. For example, if
you want to see a list of commits, you can use git log --oneline:

Click here to view code image

$ git log --oneline

8fa3e47 (HEAD) Make /reservations URL segment lowercase

fbf74ae Return IDs from database in range query

033388a Return 404 Not Found for non-guid id

0f97b34 Return 404 Not Found for absent reservation

ee3c786 Read existing reservation

62f3a56 Introduce TimeOfDay struct

Such a list shows the summary line from each commit, but none of the rest
of the commit message. Even if you don’t use Git from the command line,

someone else might. Additionally, some graphical user interfaces that make
Git more friendly actually interoperate with the Git command-line API.
There’ll be less friction if you follow the 50/72 rule.

The summary serves as a headline or a chapter title. It enables you to
navigate the history of the repository. Thus, it’s an exception from the rule
that you don’t need to explain what changed in the commit.

Write the summary in the imperative mood. While there isn’t a strong force
behind this particular rule, it’s a convention. For years, I wrote my commit
messages in the past tense while following the formatting rules of the 50/72
rule, and that gave me no problems. I did it because I found it more natural
to describe the work I’d just performed in the past tense, and no one had
told me about the rule of using imperative mood. Once I learned about that
rule, I reluctantly changed my ways, none the worse for wear.

Usually, the imperative form is shorter than the past-tense form. For
example, ‘return’ is shorter than ‘returned’. This, at least, gives you a slight
advantage when you struggle to fit a summary into 50 characters.

You don’t have to write more than the summary, and often, if the commit is
small and self-explanatory, that’s all I do.

Proper Prose

When you write emails, code comments, replies to bug reports,
exception messages, or commit notes, you no longer have to play by
the rules of a compiler or interpreter. I think that instead, you should
play by the rules of grammar.

Too many programmers seem to believe that if it isn’t code, it doesn’t
matter. When it comes to prose, anything goes. Here’s a few
examples:

“if we needed it back its on source control. but I doubt its comming
back it is a legal issue.” Marvel at the disregard for basic
punctuation.

“Thanks Paulo for your incite!” What sort of unlawful behaviour
did Paulo insight?
“To menus open at the same time” What happens if tree or for
menus are open at the same time?

Some people are dyslexic or don’t have English as their first language;
they are excused. But if you can, please write proper prose.

Have you ever tried to do a text-based search for an email, in an issue-
tracking system, or even in commit messages, only to be unable to
find something you just know ought to be there? After much wasted
time, you discover that the reason you couldn’t find the thing was
because the word you were searching for was misspelled.

Apart from such waste of time, slipshod prose also looks
unprofessional and slows down the reader. It also gives the reader an
impression that you’re less intelligent and capable than you are. Don’t
cause that friction. write good

When is a commit self-explanatory? As often as code is. That is, less
frequently than you think. If in doubt, add more context.

The commit diff already contains information about what changed, and the
code itself is the artefact that controls how the software behaves. There’s no
reason to repeat that information in the commit message.

While you can find answers to questions about what and how elsewhere, a
commit message is often the best place to explain why a change was made,
or why it took that form. Here’s a short example:

Click here to view code image

Introduce TimeOfDay struct

This makes the roles of the constructor parameters to MaitreD

clearer.

A large part of the TimeOfDay type was autogenerated by Visual

Studio.

The message answers two questions:

Why was the TimeOfDay type introduced?

Why does it look like most of the code wasn’t driven by tests?

You can find many other examples of commit messages that answer why
questions in the code repository that accompanies the book.

Struggling to understand the rationale behind code may be the highest-
ranked problem in software development [24], so it’s important to make it
clear.

9.1.2 Continuous Integration
Continuous Integration is already established in most software development
organisations. Except that it isn’t.

While everyone seems to ‘know’ that Continuous Integration is a proper
software engineering practice, most confuse it with having a Continuous
Integration server. Such a server is a fine thing to have, but doesn’t
guarantee that you do Continuous Integration.

Continuous Integration is a practice. It’s a way to work. You do what it says
on the tin: you continually integrate your code with the code that your
colleagues are working on.

Integration means merging, and you shouldn’t take the word continuous too
literally. The point, though, is to frequently share your code with everyone
else. How frequently? As a rule of thumb, at least every four hours2.

2. More frequent integration would be even better. At the limit, you could integrate every time
you’ve made a change and all tests pass.

I’ve met quite a few developers who’d tell me that the reason that Git is so
great is that it solves the problem of ‘merge hell’. Ironically, it doesn’t. It
does, however, foster a workflow different from centralised source control
system workflows.

The underlying problem with merge hell is the same as any other kind of
concurrent work on a shared resource. It’s the same problem as with
database transactions. You have more than one client that wishes to modify
a shared resource. With source control, the resource is code rather than
database rows, but the problem is the same.

You can solve this problem in a few ways. Databases have historically
offered transactions as a solution. This involves taking locks on resources.
Visual SourceSafe also worked that way. As soon as you changed a bit in a
file, SourceSafe would mark that file as checked out, and no one else could
edit it until it got checked in again.

Sometimes, people would go home for the day, leaving files checked out.
This effectively prevented other people working at other schedules from
doing anything with that file. Pessimistic locking doesn’t scale well.

Optimistic locking tends to be a more scalable tactic, as long as contention
is unlikely [55]. Before you start modifying a resource, you take a snapshot3
of it. Then you edit it. When you want to save your changes, you compare
the current state with the snapshot, as illustrated in figure 9.1. If you can tell
that the resource didn’t change since you began modifying it, you can safely
save your changes.

3. You can also use a hash or a database-generated row version.

Even if the resource was edited, you may be able to merge the two changes.
If a database row was edited, but different columns were changed, you
could still apply your changes. If you’re editing a code file, merging is
possible if your colleague changed a different part of the file than you did4.

4. There’s no guarantee that the merged result makes sense, though.

If, however, you’re both editing the same line of code at the same time, you
have a merge conflict. How do you avoid that? In the same way that you do
with optimistic locking. You can’t guarantee that it’ll never happen, but you
can make it unlikely. The shorter the time you spend editing the code, the
less likely it is that someone else made a change to the same part at the
same time.

Figure 9.1 Optimistic locking. A client first reads the current version of
a resource from the database. While it edits the resource, it also retains a
copy of the snapshot. When it wishes to update the resource, it also
sends the snapshot copy along for the ride. The database compares the
snapshot with the current state of the resource. Only if the snapshot
matches the current state does the update complete.

You may have heard that Continuous Integration means ‘running on trunk’.
Some people seem to take that so literally that they don’t create branches in
Git. Instead, they write everything on master.

The only thing you accomplish by doing that is to demonstrate that you
haven’t understood what the problem is. The problem is concurrency—not
the name of the Git branch on which you’re working. Unless you’re doing
mob programming5 with all your colleagues, there’s always a risk that one
of your coworkers is editing the same line of code that you are.

5. For details about mob programming, see subsection 9.2.2.

Decrease that risk. Make small changes, and merge as often as you can. I
recommend that you integrate at least every four hours. It’s a somewhat
arbitrary period; I picked it because it represents approximately half a day’s
work. You shouldn’t sit on something for more than half a day before you

share it with the rest of your team. Otherwise, your local Git repositories are
going to diverge, and the result with be merge hell.

If you can’t complete a feature in four hours, then hide it behind a feature
flag6 and integrate the code anyway [49].

6. See section 10.1 for more details.

9.1.3 Small Commits
There’s much variance in programming. Sometimes, you can produce a lot
of code in four hours. At other times, half a day goes by without a single
line of working code. Trying to replicate or understand a bug can take
hours.

Learning how to use an unfamiliar API may require days of research.
Sometimes, it turns out that you’ll have to scrap the code you spent a couple
of hours writing. All of that is normal.

A major benefit of Git is the manoeuvrability that it provides; that it enables
you to experiment, as illustrated by figure 9.2. Try out some code. If it
works, commit it. If not, reset. This works best if you make many small
commits. If the last commit you made was a small one, it means that
throwing it away only discards the code that you actually want to get rid of.

Figure 9.2 When you make many small commits, mistakes are cheap.
You can even commit the mistakes and abandon them on side branches,
if it should turn out that you need them later. The yeah branch looks
promising. Once you’ve reached a good checkpoint on that branch,
integrate it with master.

Manoeuvrability

The more volatile your environment, the more precious the ability to
react to unforeseen events. Git gives you tactical manoeuvrability.

Manoeuvrability is a military concept from combat aviation that
captures how quickly you can exchange kinetic and potential energy;
how fast you can gain and shed momentum [74]. How good you are at
turning on a dime.

It’s not only about being fast. It’s about being able to change direction
and accelerate. This is also useful in software development.

At the tactical level, Git gives you excellent manoeuvrability. You can
be in the middle of something, but if you realise that you actually need
to be doing something else, you can easily stash your changes and
begin anew. If you’re in doubt about whether a particular refactoring
will improve the code, then try it out. If you think the change
improves things, commit it; if not, reseta.

It’s not just a version control system; it’s a tactical advantage.

aOr, even better, commit it to a new branch. You don’t have to share that branch with anyone;
it’ll just stay on your hard drive. Who knows, what looked useless today could be useful in
the future. If nothing else, if someone in the future suggests the same refactoring that you just
tried, you can always show them: “I already tried that; here’s the result.”

Git is a distributed version control system. Until you share your changes
with other people or systems, the commits are only on your local hard drive.
This means that you can edit your commit history before you push it.

I relish the ability to edit local Git branches before I push them. Not that I
find it necessary to hide my mistakes or appear supernaturally prescient, but
because it liberates me to experiment and still enables me to leave behind a
coherent commit trail.

Figure 9.3 When you make coarse-grained commits, it can be hard to
later undo only parts of them. Here, a commit contains some code that
you’d like to undo, but it’s an integral part of that Death Star commit,
which also contains code that you’d like to keep.

If you make coarse-grained commits, you can’t easily manipulate your
code’s history. You may regret some changes you made, but when they’re
bundled with unrelated edits in a single big commit, as in figure 9.3, you
can’t easily undo only the changes you wish to get rid of.

Your commit history should be a series of snapshots of working software.
Don’t commit code that doesn’t work. On the other hand, every time your
code successfully builds, then commit it. Make micro-commits [78].

Rename a symbol; commit

Extract a method; commit

Inline a method; commit

Add a test and make it pass; commit

Add a Guard Clause; commit

Fix the way code is formatted; commit

Add a comment; commit

Delete redundant code; commit

Fix a typo; commit

In practice, you can’t make all commits small. The example Git repository
that accompanies this book has lots of micro-commit examples, but you’ll
also be able to find the occasional larger commit.

The more small commits you have, the easier you can change your mind.

After a couple of hours, you may have tried lots of things that you then
abandoned. The result may be only a handful of small, good commits.
Clean up your local branch and integrate it with master.

9.2 Collective Code Ownership
Is there a part of your code base that only Irina works on? What happens
when she goes on vacation? What happens when she’s sick? What happens
if she quits?

You can organise code ownership in multiple ways, but if a single person
‘owns’ a part of the code base, you’re vulnerable to team changes. Every
owner becomes a critical resource – a single point of failure. It also makes
refactoring harder. You can’t easily rename a method if one developer owns
the method and another programmer owns the code that calls the method
[30].

By sharing the code, you increase the bus factor. Ideally, there should be no
part of the code base where only one person dares to go.

Bus Factor

How many team members can be hit by a bus before development
halts?

You want that number to be as high as possible. If it’s 1,itmeansthatif
only one team member is out of commission, development flounders.

Some people dislike the morbid connotation of the term, and instead
prefer to ask: Can the team survive if Vera wins the lottery and quits?
The notion is then named the lottery factor, but the idea is the same.

Regardless of what you call it, the point is to raise awareness that
circumstances change. Team members come and go. In addition to
winning the lottery, or getting hit by a bus, people get reassigned, or
they simply quit their job for a myriad of reasons.

The point isn’t to actually measure any factor, but to organise work so
that no single person is indispensable.

When you have more than one programmer on a team, people tend to
specialise. Some developers prefer user-interface programming, while
others thrive with back-end development. Collective code ownership
doesn’t prohibit specialisation, but as figure 9.4 illustrates, it favours
overlap of responsibilities.

I avoid user-interface development if I can, but if there’s only one other
user-interface programmer on my team, I ought to take responsibility for
that part of the code base as well. As soon as there’s more than one team
member who handles the user interface, I may decide that it’s in good
hands. This enables me to focus on parts closer to my heart.

Figure 9.4 Three developers (Ann, Max, and Sue) work on a code base.
Ann prefers working on the left and top module (e.g. HTTP API and

Domain Model). Max favours the top and right module, while Sue likes
the two bottom modules best. All share a part of the code base with
another team member.

As argued in chapter 3, the code is the only artefact that matters. Collective
code ownership entails, then, that you must constantly answer the following
question in the affirmative:

Does the team contain more than one person comfortable working with a particular part of the code?

In other words, at least two active maintainers of the code base should
approve the changes.

You can do this in formal and informal ways, including pair programming
and code reviews. The key is that any code change involves more than one
person.

9.2.1 Pair Programming
Pair programming [5] involves two software developers collaborating in
real time on the same problem. There are several styles of pair
programming [12], but they all share the feature that collaboration happens
in real time.

The process includes continuous, on-the-go code reviews [12]. Code
produced by a pair represents agreement on implementation details. The
resulting commits already contain code that at least two persons are
comfortable with. As approval processes go, it doesn’t get more informal
than that.

I’ve seen teams who find this too informal. They add notes about co-authors
in commit messages or when they merge the changes into master. This is
entirely optional.

Pair programming can be an effective means to achieve collective code
ownership.

“Consistent pairing makes sure that every line of code was touched or seen by at least 2 people.
This increases the chances that anyone on the team feels comfortable changing the code almost
anywhere. It also makes the codebase more consistent than it would be with single coders only.

Pair programming alone does not guarantee you achieve collective code ownership. You need to
make sure that you also rotate people through different pairs and areas of the code, to prevent
knowledge silos.” [12]

It’s almost as if pair programming comes with real-time code review and
informal approval process as a side effect. It’s a low-latency sort of review.
Since you’re already two team members working on the code, you don’t
have to wait for anyone else to later approve the changes.

Even so, not everyone likes pair programming. As a typical introvert [16], I
personally find the activity exhausting. It also leaves little room for
contemplation, and it requires synchronisation of schedules.

I don’t insist that all teams pair-program, but it’s hard to argue against the
above benefits7. Regardless, it’s hardly practical or desirable to do it all the
time [12]. You can mix pair programming with other processes in this
chapter to arrive at a mix that suits your particular organisation.

7. There’s also some evidence that it’s an efficient way to work [116].

9.2.2 Mob Programming
If two programmers working together on a problem is good, then three
developers working together must be even better. And what about four
people? Five?

If you can hijack a conference room or another space where a group of
people can write code in collaboration, you can engage in mob
programming8.

8. I dislike the term mob programming, since a mob, to me, is an unthinking horde. Ensemble
programming [84] might be a better term.

It’s hard enough to convince management (or even your fellow developers)
that pair programming is productive. The knee-jerk reaction is that two

people working on the same problem must exhibit half the productivity of
two people working concurrently on two separate problems. It’s even harder
to convince naysayers that three or more people working on the same
problem doesn’t represent a drop in productivity.

I hope that, since you’ve made it so far into the book, you’re convinced that
productivity is unrelated to how fast someone types on a keyboard.

There’s likely a point of diminishing returns. Imagine trying to mob-
program with 50 people. The majority would have little to contribute, or,
alternatively, nothing would get done if you had to achieve group
consensus.

It seems, though, that there’s a sweet spot for small groups.

Mob programming isn’t my default modus operandi, but I find it useful in
certain circumstances.

I’ve used it with great success as a programming coach. In one engagement,
I spent two to three days a week with a few other programmers, helping
them apply test-driven development practices to their production code
bases. After a few months of that, I went on vacation. Meanwhile those
programmers kept going with test-driven development. Mob programming
is great for knowledge transfer.

Since it involves more than one person collaborating on a single set of code
changes, you get all the review and approval benefits from mob
programming that pair programming gives you.

Try it, if possible. Use it if you like it.

9.2.3 Code Review Latency
As Laurent Bossavit convincingly argues, most ‘common knowledge’ in
software development is more myth than reality [13]. Only a few practices
have documented effects. A code review is one such practice [20].

It’s one of the most effective ways to find defects in code [65], yet most
organisations don’t use it. A prevalent reason is that people feel that it slows
down development.

It’s true that a code review can introduce latency into the development
process. It is, however, a mistake to believe that development is more
efficient if most bugs remain undetected until much later.

In most organisations I’ve helped, a piece of work (typically termed a
feature) is handled by a single developer. When that programmer declares
the work done, no further vetting takes place.

Various organisations have different definitions of done. Some operate with
the catchphrase done done to imply that the work is only done when the
feature is complete and available for use in the production system.

As you learned in subsection 3.1.2, a too myopic focus on delivering
‘value’ may overlook problems arising from pushing a rickety, erratic,
spurious feature to production.

Figure 9.5 illustrates a situation where you declare a feature done. Later, a
defect is found. At that time, you’re working on something else. Fixing the
bug isn’t part of the plan. Your team may decide to remedy the situation,
but since it’s unplanned work, it strains your capacity. Either you work
overtime, or you miss the deadline on other features.

Figure 9.5 Many organisations don’t perform code reviews. When a
developer declares a feature done, a long time may pass before a bug is
discovered. This leads to unplanned work.

Missed deadlines encourage crunch mode: a combination of working long
hours and weekends with constant firefighting. There’s never time to do
things ‘right’ because there’s always a new unanticipated problem that you
have to deal with. This is a vicious circle.

With code reviews you can effectively detect problems before you declare
the work done. Preventing defects becomes part of the process instead of
part of the problem.

The problem with typical approaches is illustrated by figure 9.6. A
developer submits a piece of work for review. Then much time passes
before the review takes place.

Figure 9.6 How not to do code reviews: let much time pass between
completion of a feature and the review. (The smaller boxes to the right
of the review indicate improvements based on the initial review, and a
subsequent review of the improvements.)

Figure 9.7 illustrates an obvious solution to the problem. Reduce the wait
time. Make code reviews part of the daily rhythm of the organisation.

Figure 9.7 Reduce the wait time between feature completion and code
review. A review will typically spark some improvements, and a smaller
review of those improvements. These activities are indicated by the
smaller boxes to the right of the review.

Most people already have a routine that they follow. You should make code
reviews part of that routine. You can do that on an individual level, or you
can structure your team around a daily rhythm. Many teams already have a
daily stand-up. Such a regularly occurring event creates an anchor around
which the day revolves. Typically, lunchtime is another natural break in
work.

Consider, for example, setting aside half an hour each morning, as well as
half an hour after lunch9,forreviews.

9. You could also set aside half an hour before lunch, as well as before you go home for the day, but
you’d be more likely to skip the activities because you’d be in the middle of doing something else.

Keep in mind that you should make only small sets of changes. Sets that
represent less than half a day’s work. If you do that, and all team members
review those small changes twice a day, the maximum wait time will be
around four hours.

9.2.4 Rejecting a Change Set
I once helped a development organisation transition from developers
working in isolated silos with little cooperation to collective code
ownership. One practice I wanted to teach them was taking small steps.

Soon, I received a pull request from a remote developer I hadn’t heard from
in a couple of weeks. It was massive. Thousands of lines to review,
distributed over fifty files.

I didn’t review it. I immediately rejected it on the grounds of being too
big10.

10. I had the support of management to do this. Sometimes, consultants are permitted to do things
regular employees aren’t. Unfair, yes, but true.

Then I worked with the entire team, showing them how to make small
changes. I never again received a pull request of that size.

Every time you perform a code review, saying no should be a real option. A
code review is worth nothing if it’s only a rubber stamp.

I often see people submit a big change for review. A big change set
represents days (or weeks) of work. Reviewing a big change set takes a
long time [78]. Such a review can often drag on for days while the author
tries to address your myriad concerns.

Either that, or you give up and accept the changes because you have other
work to do.

Don’t do that. Reject big change sets.

Reviewers are often reluctant to reject a change set that represents days of
work. This is a common problem known as the sunk cost fallacy [51]. True,
your colleague has already spent much time making the changes, but if you
think that you’ll have to waste more time maintaining a poor design, then
the choice is clear. Cut your losses. The time your colleague wasted is
already lost. Don’t waste more time on badly organised code.

Rejecting days or weeks of work hurts. Rejecting a few hours of work is
more palatable. That’s one more reason to make small changes that
represent half a day’s work.

Besides, a code review that takes more than an hour isn’t effective [20].

9.2.5 Code Reviews
The most fundamental question that a code review should answer is this:

Will I be okay maintaining this?

That’s really it11. You can assume, I think, that the author will be happy to
maintain his or her own code. If you’re also ready to maintain it, then
you’re two persons, and you’re on the way to collective code ownership.

11. To be fair, you shouldn’t forget an even more important and basic question: Does the change
address a valid concern? Sometimes, you misunderstand your assignment. I’ve done that. We all
do that. It’s worth keeping that question in mind during a code review. It can be a cause to reject a
change, but I don’t consider it the prime focus of a code review.

What should you look for in a code review?

The most important criterion is whether the code is readable. Does it fit in
your brain?

Keep in mind that documentation (if it even exists) is typically stale,
comments can be misleading, and so on. Ultimately, the only artefact you
can trust is the code. The day you have to maintain it, the author may no
longer be around.

Some people conduct reviews by sitting together. The author guides the
reviewer through the changes. This is undesirable:

The reviewer is unable to judge whether the code is readable on its own
merits.

The author may be able to fast-talk the reviewer into overlooking
problematic practices.

Code reviews should be conducted by the reviewer reading the code at his
or her own pace. The author just wrote the code, so he or she isn’t in a
position to evaluate whether the code is readable. That’s the reason he or
she shouldn’t be actively involved in the code reading.

While rejection should be a real option, your job as a reviewer isn’t to hurt
the author or to prove your own superiority. It’s to reach an agreement on
how to move forward.

Nitpicking typically isn’t helpful, so don’t worry too much about code
formatting or variable names12. Consider whether the code fits in your
brain. Are methods too long or too complex?

12. You can always change the formatting later, or fix a typo in a variable name. As long as a fix
doesn’t constitute a breaking change, don’t let it drag out the review. On the other hand, typos in
public APIs should be addressed, because fixing them would constitute breaking changes.

Cory House suggests things to look for [47]:

Does the code work as intended?

Is the intent clear?

Is there needless duplication?

Could existing code have solved this?

Could this be simpler?

Are the tests comprehensive and clear?

This isn’t an exhaustive list, but it gives you an idea what to look for.

The outcome of a code review typically isn’t a binary accept/reject decision.
Instead, a review produces a list of suggestions that the author and the
reviewer can use to engage in a dialogue. While the author should be absent
from the actual code reading, friendly interpersonal interaction can help
speed up the rest of the process.

You’ll typically agree on some improvements. The author goes back to
implement them, and submits the new changes for a repeat review, as
illustrated in figure 9.7. This is an iterative process. Subsequent reviews
tend to be quicker. Soon, you reach consensus and integrate the changes.

All team members should be authors, and all team members should review
other team members’ code. Being a reviewer is neither a privilege nor a
burden reserved for the elect few.

Not only does that stimulate collective code ownership, but it also
encourages everyone to conduct reviews in a civilised manner.

9.2.6 Pull Requests
Online Git services such as GitHub, Azure DevOps Services, etc. support
GitHub flow13, which is a lightweight team workflow where you create
branches on your local machine, but use the centralised service to handle
merges.

13. Not to be confused with Git flow.

When you wish to merge a branch into master, you can issue a pull request.
This represents an appeal for your changes to be integrated with the master
branch.

In many team settings, you typically have sufficient permissions to
complete the merge yourself. Nevertheless, you should make it a team
policy that someone else must review and sign off on the changes. This is
just another way to perform a code review.

When you create a pull request, keep the rules for working with Git in
mind. Specifically [91]:

Make each pull request as small as possible. That’s smaller than you think.

Do only one thing in each pull request. If you want to do multiple things,
put them in separate pull requests.

Avoid reformatting, unless that’s the only thing the pull request does.

Make sure the code builds.

Make sure all tests pass.

Add tests of new behaviour.

Write proper commit messages.

When you review a pull request, all the points about performing a code
review apply. In addition, GitHub flow is an asynchronous workflow, so
you’ll typically be doing the review by writing. Keep in mind that tone and
intent is easily lost in writing. You may mean no harm with a particular
phrasing, but the recipient may read it in a way that hurts. Be extra polite
and use emojis to indicate your friendly attitude.

As a reviewer, you should take the time it takes to do a proper review. Keep
in mind that if the pull request is too big, it’s better to decline it14 than
rubber-stamp approve it.

If you decide to take on the review, work with the author to make
improvements. Don’t just point out things you don’t like; offer concrete
alternatives. Remember to cheer when you see something you like. Pull
down the code and run it on your own machine [113].

14. Beginners often submit oversized pull requests because they don’t know how to split their work
into smaller parts. That’s what code that fits in your brain is all about, but it’s not something that

everyone knows how to do from day one. Help your colleagues with that.

9.3 Conclusion
Every team member has a few strong skills. It’s only natural that you
gravitate towards the part of the code base that best suits you. If everyone
does that, it may engender a sense of ownership. That’s fine as long as it
remains weak code ownership [30]. This is when a piece of code has a
‘natural’ owner or main developer, but everyone is allowed to make
changes to it.

You should promote collective code ownership by processes that call for
more than a single person being responsible for every change to the code
base. You can do this informally with pair or mob programming, or more
formally with code reviews.

As subsection 1.3.4 discussed, ‘real’ engineers work in teams, and they sign
off on each others’ work [40]. Having more than one pair of eyes on
everything that goes on is one of the most engineering-like practices you
can adopt in software development.

II Sustainability

Part I was about getting up to speed. The structure revolved around an
example code base accelerating from zero (no code) to a deployed feature.

Once you have a deployed feature, you have a working system. One feature,
however, is hardly enough. You’ll have to add more. Along the way, you’ll
discover that, despite your best efforts, the software has bugs.

It’s no fun accelerating from zero to great speed only to hit a wall. Once
you’ve achieved velocity, you want to maintain it.

Part II focuses on keeping a good cruising speed. How do you add new
features to an existing code base? How do you troubleshoot? What about
cross-cutting concerns? What about performance?

Part II discusses such topics, with an emphasis on augmenting existing
code. The examples come from the same code base as in part I, but are
sampled from a wider range of commits.

If you want to follow along in the Git repository, I left that part of it more
honest; that is, less polished. I haven’t tried to hide my mistakes, so you’ll
see commits that undo the work of previous commits, etc.

I’ve written extensive commit messages whenever I felt that a commit
contained something worth pointing out. If you will, the log is a little
narrative by itself. It might be worthwhile to read as a kind of appendix.

10 Augmenting Code

The reality of professional software development is that you mostly work
with existing code. The previous chapters had much to say about beginning
a new code base, and how to go from zero to a working system as
efficiently as possible. Greenfield development comes with its own set of
challenges, but they’re different from the problems typically associated with
making changes to an existing code base.

You’ll mostly be editing production code. Even if you do test-driven
development, you’ll mostly be adding new tests, while you’ll often have to
change existing production code.

The process of changing the structure of existing code without changing its
behaviour is called refactoring. Other resources [34][53][27] already cover
that ground, so I don’t intend to regurgitate that material here. Instead, I’ll
focus on how to add new behaviour to a code base.

Informally, I tend to think of addition of behaviour as roughly falling into
three buckets:

• Completely new functionality

• Enhancements to existing behaviour

• Bug-fixing

You’ll learn about bug-fixing in chapter 12, while this chapter covers the
other two cases. Completely new behaviour is, in many ways, the easiest
kind of change to make, so let’s start there.

10.1 Feature Flags

When your task is to add a completely new feature, most of the code you’ll
be writing will be new code; code that you add to the code base, rather than
changes made to the existing code base.

Perhaps there’s existing code infrastructure that you can leverage, and
perhaps you’ll have to make modifications to it before you can add the new
feature, but for the most part, adding a new feature is smooth sailing. The
biggest challenge that you’re likely to encounter1 is sticking to the practice
of Continuous Integration.

1. Apart from, of course, that the feature itself may be difficult to implement.

As you learned in subsection 9.1.2, as a rule of thumb, you should merge
your code with the master branch at least twice a day. In other words, you
can, at most, work on something for four hours before you ought to
integrate it. What if you can’t complete an entire feature in four hours?

Most people are uncomfortable with merging incomplete features into
master, particularly if their team also practices Continuous Deployment.
That would imply that incomplete features are deployed to the production
system. Surely, that’s undesirable.

The solution is to distinguish between the feature itself and the code that
implements it. You can deploy ‘incomplete code’ to your production
system, as long as the behaviour that it implements is unavailable. Hide the
functionality behind a feature flag [49].

10.1.1 Calendar Flag
Here’s an example from the restaurant code base. Once I was done with the
functionality to make a reservation, I wanted to add a calendar feature to
the system. This should enable a client to browse a month or a day to view
how many remaining seats are available. This can be used by a user
interface to display whether or not a date is even open for additional
reservations, and so on.

Adding calendars is a complex undertaking. You need to enable navigation
from month to month, calculate the maximum number of remaining seats
for a given time slot, and so on. It’s unlikely you can do all of that in four
hours; I couldn’t2.

2. If you examine the example code base, you can compare the commit that starts this work with the
commit that ends it. Close to two months separate those two! Okay, so in between, I had a four-
week summer vacation, did some other work for paying clients, et cetera. By a rough estimate,
though, the entire work may still represent between one and two weeks of work. It definitely
wasn’t done in four hours!

Before I started this work, the REST API’s ‘home’ resource responded with
the JSON representation shown in listing 10.1.

Listing 10.1 Sample HTTP interaction with the REST API’s ‘home’
resource. When you GET the ‘index’ page /, you receive a JSON array of
links. As you can tell from the localhost part of the URL, I took this
example from running the system on my development machine. When
requesting the resource from the deployed system, the URL identifies a
proper host name.

Click here to view code image

GET / HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{

 "links": [

 {

 "rel": "urn:reservations",

 "href": "http://localhost:53568/reservations"

 }

]

}

The system is a true RESTful API that uses hypermedia controls (i.e. links)
[2] rather than OpenAPI (née Swagger) or the like. A client wishing to
make a reservation requests the only documented URL of the API (the
‘home’ resource) and looks for a link with the relationship type
"urn:reservations". The actual URL should be opaque to the client.

Before I started working on the calendar feature, the code that generated the
response in listing 10.1 looked like listing 10.2.

Listing 10.2 The code responsible for generating the output shown in
listing 10.1. CreateReservationsLink is a private helper method.
(Restaurant/b6fcfb5/Restaurant.RestApi/HomeController.cs)
Click here to view code image

public IActionResult Get()

{

 return Ok(new HomeDto { Links = new[]

 {

 CreateReservationsLink()

 } });

}

When I started working on the calendar feature, I soon realised that it’d take
me more than four hours, so I introduced a feature flag [49]. It enabled me
to write the Get method as shown in listing 10.3.

Listing 10.3 Generation of calendar links hidden behind a feature flag. By
default, the enableCalendar flag is false, which results in output identical
to that shown in listing 10.1. Compared with the code in listing 10.2 the
highlighted lines implement the new feature.
(Restaurant/cbfa7b8/Restaurant.RestApi/HomeController.cs)
Click here to view code image

public IActionResult Get()

{

 var links = new List<LinkDto>();

 links.Add(CreateReservationsLink());

 if (enableCalendar)

 {

 links.Add(CreateYearLink());

 links.Add(CreateMonthLink());

 links.Add(CreateDayLink());

 }

 return Ok(new HomeDto { Links = links.ToArray() });

}

The enableCalendar variable is a Boolean value (a flag) that ultimately
originates from a configuration file. In the context of listing 10.3,it’saclass
field supplied via the Controller’s constructor, as shown in listing 10.4.

Listing 10.4 HomeController constructor receiving a feature flag.
(Restaurant/cbfa7b8/Restaurant.RestApi/HomeController.cs)
Click here to view code image

private readonly bool enableCalendar;

public HomeController(CalendarFlag calendarFlag)

{

 if (calendarFlag is null)

 throw new ArgumentNullException(nameof(calendarFlag));

 enableCalendar = calendarFlag.Enabled;

}

The CalendarFlag class is just a wrapper around a Boolean value. The
wrapper is conceptually redundant, but is required because of a technical
detail: The built-in ASP.NET Dependency Injection Container is
responsible for composing classes with their dependencies, and it refuses to
consider a value type3 a dependency. As a workaround for this issue, I
introduced the CalendarFlag wrapper4.

3. In C# known as a struct.
4. I could live with this workaround because I knew that it was only going to be temporary. Once the

feature is fully implemented, you can delete its feature flag. An alternative to introducing wrapper
classes for primitive dependencies is to dispense with the built-in Dependency Injection Container
altogether. I’d be inclined to do this in a code base if I had to maintain it for years, but I
acknowledge that this comes with its own set of advantages and disadvantages. I don’t want to
fight that battle here, but you can read how to do that in ASP.NET in Steven van Deursen’s and my
book Dependency Injection Principles, Practices, and Patterns [25].

When the system starts, it reads various values from its configuration
system. It uses those values to configure the appropriate services. Listing
10.5 shows how it reads the EnableCalendar value and configures the
CalendarFlag ‘service’.

Listing 10.5 Configuring the feature flag based on its configuration value.
(Restaurant/cbfa7b8/Restaurant.RestApi/Startup.cs)
Click here to view code image

var calendarEnabled = new CalendarFlag(

 Configuration.GetValue<bool>("EnableCalendar"));

services.AddSingleton(calendarEnabled);

If the "EnableCalendar" configuration value is missing, the GetValue
method returns the default value, which for Boolean values in .NET is
false.SoI simply didn’t configure the feature, which meant that I could
keep merging and deploying to production without exposing that behaviour.

In the automated integration tests, however, I overrode the configuration to
turn on the feature. Listing 10.6 shows how. This means that I could still
use integration tests to drive the behaviour of the new feature.

Listing 10.6 Overriding the feature flag configuration for testing purposes.
The highlighted lines are new compared to listing 4.22.
(Restaurant/cbfa7b8/Restaurant.RestApi.Tests/RestaurantApiFactory.cs)
Click here to view code image

protected override void ConfigureWebHost(IWebHostBuilder

builder)

{

 if (builder is null)

 throw new ArgumentNullException(nameof(builder));

 builder.ConfigureServices(services =>

 {

 services.RemoveAll<IReservationsRepository>();

 services.AddSingleton<IReservationsRepository>(

 new FakeDatabase());

 services.RemoveAll<CalendarFlag>();

 services.AddSingleton(new CalendarFlag(true));

 });

}

Additionally, when I wanted to perform some exploratory testing by
interacting with the new calendar feature in a more ad hoc fashion, I could
set the "EnableCalendar" flag to true in my local configuration file, and
the behaviour would also light up.

Once, after weeks of work, I was finally able to complete the feature and
turn it on in production. I deleted the CalendarFlag class. That caused all
the conditional code that relied on the flag to no longer compile. After that,
it was basically a matter of leaning on the compiler [27] to simplify all the
places where the flag was used. Deleting code is always so satisfying,
because it means that there’s less code to maintain.

The ‘home’ resource now responds with the output shown in listing 10.7.

Listing 10.7 Sample HTTP interaction with the REST API’s ‘home’
resource, now with calendar links. Compare with listing 10.1.

Click here to view code image

GET / HTTP/1.1

HTTP/1.1 200 OK

Content-Type: application/json

{

 "links": [

 {

 "rel": "urn:reservations",

 "href": "http://localhost:53568/reservations"

 },

 {

 "rel": "urn:year",

 "href": "http://localhost:53568/calendar/2020"

 },

 {

 "rel": "urn:month",

 "href": "http://localhost:53568/calendar/2020/10"

 },

 {

 "rel": "urn:day",

 "href": "http://localhost:53568/calendar/2020/10/20"

 }

]

}

In this example, you’ve seen how to use a feature flag to hide a feature until
it’s fully implemented. This example is based on a REST API, where it’s
easy to hide incomplete behaviour: just don’t surface the new capability as a
link. In other types of applications, you could use the flag to hide the
corresponding user interface elements, and so on.

10.2 The Strangler Pattern
When you add a new feature, you can often do that by appending new code
to the existing code base. Enhancing existing features is something else.

I once led an effort to refactor towards deeper insight [26]. My colleague
and I had identified that the key to implementing a new feature would
require changing a fundamental class in our code base.

While such an insight rarely arrives at an opportune time, we wanted to
make the change, and our manager allowed it.

A week later, our code still didn’t compile.

I’d hoped that I could make the change to the class in question and then
lean on the compiler [27] to identify the call sites that needed modification.
The problem was that there was an abundance of compilation errors, and
fixing them wasn’t a simple question of search-and-replace.

My manager finally took me aside to let me know that he wasn’t satisfied
with the situation. I could only concur.

After a mild dressing down, he allowed me to continue the work, and a few
more days of heroic5 effort saw the work completed.

5. To be clear, heroism isn’t an engineering practice. It’s too unpredictable, and also stimulates the
development of sunk cost fallacies. Try to do without it.

That’s a failure I don’t intend to repeat.

As Kent Beck puts it:

“for each desired change, make the change easy (warning: this may be hard), then make the easy
change” [6]

I did try to make the change easy, but failed to realise just how hard it
would be. It doesn’t have to be that hard, though. Follow a simple rule of
thumb:

For any significant change, don’t make it in-place; make it side-by-
side.

This is also known as the Strangler pattern [35]. Despite its name, it has
nothing to do with violence, but is named after the strangler fig, a vine that
grows around a ‘host’ tree and over years may strangle it by stealing both
light and water. At that time, the vine has grown strong enough to support
itself. Left is a new, hollow tree approximately the size and shape of the old,
dead tree, as illustrated by figure 10.1.

Figure 10.1 Stages of strangler fig lifetime. To the left is a tree, in the
middle the original tree has been girdled by the strangler fig, and to the
right, only the strangler fig remains.

Martin Fowler originally described the pattern in the context of large-scale
architecture, as a way to gradually replace a legacy system with a newer

system. I’ve found it to be useful at almost any scale.

In object-oriented programming you can apply the pattern both at the
method level and the class level. At the method level, you first add a new
method, gradually move callers over, and finally delete the old method. At
the class level, you first add a new class, gradually move callers over, and
finally delete the old class.

You’ll see examples of both, starting at the method level.

10.2.1 Method-Level Strangler
When I was implementing the calendar feature discussed in section 10.1,I
needed a way to read reservations for multiple dates. The current
incarnation of the IReservationsRepository interface, however, looked as
in listing 10.8. The ReadReservations method took a single DateTime as
input, and returned all the reservations for that date.

Listing 10.8 The IReservationsRepository interface with a
ReadReservations method focused on a single date.
(Restaurant/53c6417/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime dateTime);

 Task<Reservation?> ReadReservation(Guid id);

 Task Update(Reservation reservation);

 Task Delete(Guid id);

}

I needed a method that would return reservations for a range of dates. Your
reaction to such a requirement might be to add a new method overload and
leave it at that. Technically, that’s possible, but think of the maintenance
tax. When you add more code, you have more code to maintain. An extra
method on an interface means that you’ll have to maintain it on all
implementers, too.

I’d rather prefer replacing the old ReadReservations method with a new
method. This is possible, because reading reservations for a range of dates
instead of a single date actually weakens the preconditions. You can view
the current method as a special case, where the range is just a single date.

If much of your code already calls the current method, however, making the
change in one fell swoop might be overreaching. Instead, add the new
method first, gradually migrate call sites, and finally delete the old method.
Listing 10.9 shows the IReservationsRepository interface with the new
method added.

When you add a new method like that, the code fails to compile until you
add it to all classes that implement the interface. The restaurant reservation
code base only has two implementers: SqlReservationsRepository and
FakeDatabase. I added the implementation to both classes in the same
commit, but that’s all I had to do. Even with the SQL implementation, that
represents perhaps five to ten minutes of work.

Listing 10.9 The IReservationsRepository interface with an additional
ReadReservations method focused on a range of dates. The highlighted
lines are new compared to listing 10.8.
(Restaurant/fa29d2f/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime dateTime);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime min, DateTime max);

 Task<Reservation?> ReadReservation(Guid id);

 Task Update(Reservation reservation);

 Task Delete(Guid id);

}

Alternatively,Icouldalsohaveaddedthenew ReadReservations overload to
both SqlReservationsRepository and FakeDatabase, but left them
throwing a NotImplementedException. Then, in following commits, I
could have used test-driven development to flush out the desired behaviour.
At every point during this process, I’d have a set of commits that I could
merge with master.

Yet another option would be to first add methods with identical signatures
to the concrete classes, and only after all those are in place, add the method
to the interface.

In any case, you can incrementally develop the new method, because at this
point, no code is using it.

When the new method is firmly in place, you can edit the call sites, one at a
time. In this way, you can take as much time as you need. You can merge
with master at any time during this process, even if that means deploying to
production. Listing 10.10 shows a code fragment that now calls the new
overload.

Listing 10.10 Code fragment calling the new ReadReservations overload.
The two first highlighted lines are new, while the last highlighted line was
edited to call the new method instead of the original ReadReservations
method.
(Restaurant/0944d86/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

var min = res.At.Date;

var max = min.AddDays(1).AddTicks(-1);

var reservations = await Repository

 .ReadReservations(min, max)

 .ConfigureAwait(false);

I changed the calling code one call site at a time, and committed to Git after
each change. After a few commits, I was done; there were no more code
calling the original ReadReservations method.

Finally, I could delete the original ReadReservations method, leaving the
IReservationsRepository interface as shown in listing 10.11.

Listing 10.11 The IReservationsRepository interface once the Strangler
process has completed. The original ReadReservations method is gone;
only the new version remains. Compare with listings 10.8 and 10.9.
(Restaurant/bcffd6b/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 DateTime min, DateTime max);

 Task<Reservation?> ReadReservation(Guid id);

 Task Update(Reservation reservation);

 Task Delete(Guid id);

}

When you delete a method from an interface, remember to also remove it
from all implementing classes. The compiler isn’t going to complain if you
let them stay, but that’s a maintenance burden you don’t need to take on.

10.2.2 Class-Level Strangler

You can also apply the Strangler pattern on the class level. If you have a
class that you’d like to refactor, but you’re concerned that it’ll take too long
to change it in place, you can add a new class, move callers over one by
one, and finally delete the old class.

You can find a few examples of that in the online restaurant reservation
code base. In one case, I found that I’d over-engineered a feature6. I needed
to model the allocation of reservations to tables at a given time, so I’d
added a generic Occurrence<T> class that could associate any type of object
with a time. Listing 10.12 shows its constructor and properties to give you a
sense of it.

6. Yes, even when I try my best to follow all practices that I present in this book, I, too, err. Despite
admonitions to do the simplest thing that could possibly work [22], I occasionally make things too
complicated because ‘I’m certainly going to need it later’. Hitting yourself over the head for your
errors, however, isn’t productive. When you realise your mistake, just acknowledge and correct it.

Listing 10.12 Constructor and properties of the Occurrence<T> class. This
class associates any type of object with a time. It turned out, however, that
this was over-engineered.
(Restaurant/4c9e781/Restaurant.RestApi/Occurrence.cs)
Click here to view code image

public Occurrence(DateTime at, T value)

{

 At = at;

 Value = value;

}

public DateTime At { get; }

public T Value { get; }

After I’d implemented the features where I needed the Occurrence<T>
class, I realised that I didn’t really need it to be generic. All the code that
used the object contained a collection of tables with associated reservations.

Generics do make code slightly more complex. While I find them useful in
the right circumstance, they also make things more abstract. For example, I
had a method with the signature shown in listing 10.13.

Listing 10.13 A method returning a triple-nested generic type. Too
abstract? (Restaurant/4c9e781/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

public IEnumerable<Occurrence<IEnumerable<Table>>> Schedule(

 IEnumerable<Reservation> reservations)

Consider the advice from subsection 8.1.5. By looking at the types, can you
figure out what the Schedule method does? How do you think about a type
like IEnumerable<Occurrence<IEnumerable<Table>>>?

Wouldn’t the method be easier to understand if it had the signature shown in
listing 10.14?

Listing 10.14 A method returning a collection of TimeSlot objects. It’s the
same method as shown in listing 10.13, but with a more concrete return
type. (Restaurant/7213b97/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

public IEnumerable<TimeSlot> Schedule(

 IEnumerable<Reservation> reservations)

IEnumerable<TimeSlot> seems like a more palatable return type, so I
wanted to refactor from the Occurrence<T> class to such a TimeSlot class.

There was already enough code that used Occurrence<T> thatIdidn’tfeel
comfortable that I could perform such a refactoring in a brief enough time
span. Instead, I decided to use the Strangler pattern: first add the new
TimeSlot class, then migrate callers one by one, and finally delete the
Occurrence<T> class.

I first added the TimeSlot class to the code base. Listing 10.15 shows its
constructor and properties so that you can get a sense of how it looks.

As soon as I’d added this class I could commit it to Git and merge it with
the master branch. That didn’t break any functionality.

I could then start to migrate code from using Occurrence<T> to use
TimeSlot. I started with some helper methods, like the one shown in listing
10.16.

Listing 10.15 Constructor and properties of the TimeSlot class.
(Restaurant/4c9e781/Restaurant.RestApi/TimeSlot.cs)
Click here to view code image

public TimeSlot(DateTime at, IReadOnlyCollection<Table> tables)

{

 At = at;

 Tables = tables;

}

public DateTime At { get; }

public IReadOnlyCollection<Table> Tables { get; }

Listing 10.16 Signature of a helper method that takes an Occurrence
parameter. Compare with listing 10.17.
(Restaurant/4c9e781/Restaurant.RestApi/ScheduleController.cs)
Click here to view code image

private TimeDto MakeEntry(Occurrence<IEnumerable<Table>>

occurrence)

Instead of taking an Occurrence<IEnumerable<Table>> parameter I wanted
to change it to take a TimeSlot parameter, as shown in listing 10.17.

Listing 10.17 Signature of a helper method that takes a TimeSlot
parameter. Compare with listing 10.16.
(Restaurant/0030962/Restaurant.RestApi/ScheduleController.cs)
Click here to view code image

private static TimeDto MakeEntry(TimeSlot timeSlot)

The code that called this MakeEntry helper method was itself a helper
method that received an IEnumerable<Occurrence<IEnumerable<Table>>>
argument, and I wanted to gradually migrate callers. I realised that I could
do that if I added the temporary conversion method in listing 10.18. This
method supports the conversion between the old class and the new class.
Once I completed the Strangler migration I deleted it together with the class
itself.

I also had to migrate the Schedule method in listing 10.13 to the version in
listing 10.14. Since I had multiple callers, I wanted to migrate each caller
separately, committing to Git between each change. This meant that I
needed the two versions of Schedule to exist side by side for a limited time.
That’s not strictly possible because they differ only in their return type, and
C# doesn’t support return-type overloading.

Listing 10.18 Temporary conversion method from Occurrence to
TimeSlot. (Restaurant/0030962/Restaurant.RestApi/Occurrence.cs)
Click here to view code image

internal static TimeSlot ToTimeSlot(

 this Occurrence<IEnumerable<Table>> source)

{

 return new TimeSlot(source.At, source.Value.ToList());

}

To get around that issue, I first used the Rename Method [34] refactoring to
rename the original Schedule method to ScheduleOcc7. I then copied and
pasted it, changed its return type and changed the new method’s name back
to Schedule. I now had the original method called ScheduleOcc and the
new method with a better return type, but no callers. Again, this is a point
where you can commit your changes and merge with master.

7. Occ for Occurrence.

With two methods, I could now migrate callers one at a time, checking my
changes into Git for each method. Again, this is work that you can do
gradually without getting in the way of other work that you or your team

mates perform. Once all callers called the new Schedule method, I deleted
the ScheduleOcc method.

The Schedule method wasn’t the only method that returned data that used
Occurrence<T>, but I could migrate the other methods to TimeSlot using
the same technique.

When I finally had completed the migration, I deleted the Occurrence<T>
class, including the conversion helper method in listing 10.18.

During this process, I was never more than five minutes from being able to
do a commit, and all commits left the system in a consistent state that could
be integrated and deployed.

10.3 Versioning
Do yourself a favour: Read the Semantic Versioning specification [83]. Yes,
all of it. It takes less than fifteen minutes. In short, it uses a
major.minor.patch scheme. You only increment the major version when you
introduce breaking changes; incrementing the minor version indicates the
introduction of a new feature, and a patch version incrementation indicates
a bug fix.

Even if you don’t decide to adopt Semantic Versioning, I believe that it’ll
help you think more clearly about breaking and nonbreaking changes.

If you’re developing and maintaining a monolithic application with no API,
breaking changes may not matter, but as soon as other code depends on
your code, it does.

This is true regardless of where that depending code lives. Obviously,
backwards compatibility is crucial if you have external, paying customers
who depend on your API. But even if the system that depends on your code
is ‘just’ another code base in your organisation, it still pays to think about
compatibility.

Every time you break compatibility, you’ll need to coordinate with your
callers. Sometimes, this happens reactively, as in “your latest change broke
our code!” It’d be better if you can give clients advance warning.

Things run smoother, though, if you can avoid breaking changes. In
Semantic Versioning, this means staying on the same major version for a
long time. This may take a little time getting used to.

I once maintained an open-source library that stayed on major version 3 for
more than four years! The last version 3 release was 3.51.0. Apparently, we
added 51 new features during those four years, but since we didn’t break
compatibility, we didn’t increment the major version.

10.3.1 Advance Warning
If you must break compatibility, be deliberate about it. If you can, warn
users in advance. Consider the hierarchy of communication discussed in
subsection 8.1.7 to figure out which communications channel will work
best.

For example, some languages enable you to deprecate methods with an
annotation. In .NET this is called [Obsolete],inJava @Deprecated.Listing
10.19 shows an example. This’ll cause the C# compiler to emit a compiler
warning for all code that calls that method.

Listing 10.19 Deprecated method. The [Obsolete] attribute marks the
method as deprecated, as well as giving a hint about what to do instead.
(Restaurant/4c9e781/Restaurant.RestApi/CalendarController.cs)
Click here to view code image

[Obsolete("Use Get method with restaurant ID.")]

[HttpGet("calendar/{year}/{month}")]

public Task<ActionResult> LegacyGet(int year, int month)

If you realise that you must break compatibility, consider if you can bundle
more than one breaking change into a single release. This isn’t always a
good idea, but it sometimes can be. Every time you introduce a breaking
change, you force client developers to deal with it. If you have multiple
smaller breaking changes, it might make client developers’ lives easier if
you bundle them into a single release.

On the other hand, it’s probably not a good idea to release multiple breaking
changes if each of them forces client developers into massive rework.
Exercise some judgment; this is, after all, the art of software engineering.

10.4 Conclusion
You work in existing code bases. As you add new features, or enhance the
ones already there, or fix bugs, you make changes to existing code. Take
care that youdosoinsmallsteps.

If you’re working on a feature that takes a long time to implement, it might
be tempting to develop it on a feature branch. Don’t do that; it’ll lead to
merge hell. Instead, hide the feature behind a feature flag and integrate
often [49].

When you want to make a sizeable refactoring, consider using the Strangler
pattern. Instead of performing the edit in situ, change the code by letting the
new and the old ways co-exist for a while. This enables you to gradually
migrate callers a little at a time. You can even do this as a maintenance task
that you interleave with other work. Only when the migration is complete
do you delete the old method or class.

If the method or class is part of a published object-oriented API, deleting a
method or class may constitute a breaking change. In such a case, you’ll
need to explicitly consider versioning. First deprecate the old API to warn
users about the impending change, and only delete the deprecated API
when releasing a new major version.

11 Editing Unit Tests

Few code bases are bootstrapped with the practices covered in the first part of the
book. They have long methods, high degrees of complexity, poor encapsulation, and
little automated test coverage. We call such code bases legacy code. There’s already a
great book about Working Effectively with Legacy Code [27], so I don’t intend to
repeat its lessons here.

11.1 Refactoring Unit Tests
If you have a trustworthy automated test suite, you can apply many of the lessons
from Refactoring [34]. That book discusses how to change the structure of existing
code without changing its behaviour. Many of the techniques described in it are built
into modern IDEs, such as renaming, extracting helper methods, moving code around,
and so on. I don’t wish to spend too much time on that topic, either, because it, too, is
covered in greater depth by other sources [34].

11.1.1 Changing the Safety Net
While Refactoring [34] explains how to change the structure of production code,
given the safety net of an automated test suite, xUnit Test Patterns [66] comes with the
subtitle Refactoring Test Code1.

1. Although, to be fair, it’s more a book about design patterns than about refactoring.

Test code is code you write to gather confidence that your production code works. As
I’ve argued in this book, it’s easy to make mistakes when writing code. How do you
know that your test code is mistake-free, then?

You don’t, but some of the practices outlined earlier improves your chances. When
you use tests as a driver for your production code, you’re entering into a sort of
double-entry bookkeeping [63] where the tests keep the production code in place, and
the production code provides feedback about the tests.

Another mechanism that should instil trust is if you’ve been following the Red Green
Refactor checklist. When you see a test fail, you know that it actually verifies

something you want to verify. If you never edit the test, you can trust it to keep doing
that.

What happens if you edit test code?

The more you edit test code, the less you can trust it. The backbone of refactoring,
however, is a test suite:

“to refactor, the essential precondition is [...] solid tests” [34]

Formally speaking, then, you can’t refactor unit tests.

In practice, you’re going to have to edit unit test code. You should realise, however,
that contrary to production code, there’s no safety net. Modify tests carefully; move
deliberately.

11.1.2 Adding New Test Code
In test code, the safest edits you can make is to append new code. Obviously, you can
add entirely new tests; that doesn’t diminish the trustworthiness of existing tests.

Clearly, adding an entirely new test class may be the most isolated edit you can make,
but you can also append new test methods to an existing test class. Each test method is
supposed to be independent of all other test methods, so adding a new method
shouldn’t affect existing tests.

You can also append test cases to a parametrised test. If, for example, you have the
test cases shown in listing 11.1, you can add another line of code, as shown in listing
11.2. That’s hardly dangerous.

Listing 11.1 A parametrised test method with three test cases. Listing 11.2 shows the
updated code after I added a new test case.
(Restaurant/b789ef1/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(null, "j@example.net", "Jay Xerxes", 1)]

[InlineData("not a date", "w@example.edu", "Wk Hd", 8)]

[InlineData("2023-11-30 20:01", null, "Thora", 19)]

public async Task PostInvalidReservation(

Listing 11.2 A test method with a new test case appended, compared to listing 11.1.
The line added is highlighted.
(Restaurant/745dbf5/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Theory]

[InlineData(null, "j@example.net", "Jay Xerxes", 1)]

[InlineData("not a date", "w@example.edu", "Wk Hd", 8)]

[InlineData("2023-11-30 20:01", null, "Thora", 19)]

[InlineData("2022-01-02 12:10", "3@example.org", "3 Beard", 0)]

public async Task PostInvalidReservation(

You can also add assertions to existing tests. Listing 11.3 shows a single assertion in a
unit test, while listing 11.4 shows the same test after I added two more assertions.

Listing 11.3 A single assertion in a test method. Listing 11.4 shows the updated code
after I added more assertions.
(Restaurant/36f8e0f/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

Assert.Equal(

 HttpStatusCode.InternalServerError,

 response.StatusCode);

Listing 11.4 Verification phase after I added two more assertions, compared to listing
11.3. The lines added are highlighted.
(Restaurant/0ab2792/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

Assert.Equal(

 HttpStatusCode.InternalServerError,

 response.StatusCode);

Assert.NotNull(response.Content);

var content = await response.Content.ReadAsStringAsync();

Assert.Contains(

 "tables",

 content,

 StringComparison.OrdinalIgnoreCase);

These two examples are taken from a test case that verifies what happens if you try to
overbook the restaurant. In listing 11.3, the test only verifies that the HTTP response

is 500 Internal Server Error2. The two new assertions verify that the HTTP
response includes a clue to what might be wrong, such as the message No tables available.

2. Still a controversial design decision. See the footnote on page 116 for more details.

I often run into programmers who’ve learned that a test method may only contain a
single assertion; that having multiple assertions is called Assertion Roulette. I find that
too simplistic. You can view appending new assertions as a strengthening of
postconditions. With the assertion in listing 11.3 any 500 Internal Server Error
response would pass the test. That would include a ‘real’ error, such as a missing
connection string. This could lead to false negatives, since a general error could go
unnoticed.

Adding more assertions strengthens the postconditions. Any old 500 Internal
Server Error will no longer do. The HTTP response must also come with content,
and that content must, at least, contain the string "tables".

This strikes me as reminiscent of the Liskov Substitution Principle [60]. There are
many ways to express it, but in one variation, we say that subtypes may weaken
preconditions and strengthen postconditions, but not the other way around. You can
think of subtyping as an ordering, and you can think of time in the same way, as
illustrated by figure 11.1. Just like a subtype depends on its supertype, a point in time
‘depends’ on previous points in time. Going forward in time, you’re allowed to
strengthen the postconditions of a system, just like a subtype is allowed to strengthen
the postcondition of a supertype.

Figure 11.1 A type hierarchy forms a directed graph, as indicated by the arrow
from subtype to supertype. Time, too, forms a directed graph, as indicated by the
arrow from t2 to t1. Both present a way to order elements.

Think of it another way, adding new tests or assertions is fine; deleting tests or
assertions would weaken the guarantees of the system. You probably don’t want that;
herein lie regression bugs and breaking changes.

11.1.3 Separate Refactoring of Test and Production Code
Many code changes are ‘safe’ if you perform them correctly. Some of the refactorings
described in Refactoring [34] are now included in modern IDEs. The most basic are
various rename operations such as Rename Variable and Rename Method. Others
include Extract Method or Move Method.

Such refactorings tend to be ‘safe’ in the sense that you can be confident that they
aren’t going to change the behaviour of the code. This also applies to test code. Use
those refactorings with confidence in your production and test code alike.

Other changes are more risky3. When you perform such changes in your production
code, a good test suite will alert you to any problems. If you make such changes in
your test code, there’s no safety net.

3. Add Parameter, for example.

Or rather, that’s not quite true

The test code and the production code are coupled to each other, as figure 11.2
illustrates. If you introduce a bug in the production code, but didn’t change the tests,
the tests may alert you to the problem. There’s no guarantee that this will happen,
since you may not have any test cases that will expose the defect you just introduced,
but you might be lucky. Furthermore, if the bug is a regression, you ought to already
have a test of that scenario in place.

Figure 11.2 Test code and production code are coupled.

Likewise, if you edit the test code without changing the production code, a mistake
may manifest as a failing test. Again, there’s no guarantee that this will happen. You
could, for example, first use the Extract Method to turn a set of assertions into a helper
method. This is in itself a ‘safe’ refactoring. Imagine, however, that you now go look
for other occurrences of that set of assertions and replace them with a call to the new
helper method. That isn’t as safe, because you could make a mistake. Perhaps you
replace a small variation of the assertion set with a call to the helper method. If that
variation, however, implied a stronger set of postconditions, you’ve just inadvertently
weakened the tests.

While such mistakes are difficult to guard against, other mistakes will be immediately
apparent. If, instead of weakening postconditions, you accidentally strengthen them
too much, tests may fail. You may then inspect the failing test cases and realise that
you made a mistake.

For this reason, when you need to refactor your test code, try to do it without touching
the production code.

You can think of this rule as jumping from production code to test code and back to
production code, as illustrated by figure 11.3.

Figure 11.3 Refactor test code apart from production code. Commit each
refactoring separately. It’s safer to refactor production code, so you can refactor it
more often than test code. Other, safer changes, such as renaming a method, may
touch both test and production code; those kinds of changes are not shown in this
figure.

As an example, I was working on the restaurant code base to add email capabilities.
I’d already implemented the behaviour that when you make a reservation, the system
should send you a confirmation email.

Interaction with the external world is best modelled as a polymorphic type, and I
favour interfaces like the one shown in listing 11.5 over base classes.

To unit test that the system sends an email under the right circumstances, I added the
Test Spy [66] shown in listing 11.6 to keep an eye on indirect output [66].

Listing 11.5 Initial iteration of the IPostOffice interface.
(Restaurant/b85ab3e/Restaurant.RestApi/IPostOffice.cs)
Click here to view code image

public interface IPostOffice

{

 Task EmailReservationCreated(Reservation reservation);

}

Listing 11.6 Initial version of SpyPostOffice, implementing the version of
IPostOffice shown in listing 11.5.
(Restaurant/b85ab3e/Restaurant.RestApi.Tests/SpyPostOffice.cs)
Click here to view code image

public class SpyPostOffice : Collection<Reservation>, IPostOffice

{

 public Task EmailReservationCreated(Reservation reservation)

 {

 Add(reservation);

 return Task.CompletedTask;

 }

}

Notice that SpyPostOffice inherits from a collection base class. This enables the
implementation to Add the reservation to itself. A test can use this behaviour to
verify that the system invokes the EmailReservationCreated method; that it sends an
email, so to speak.

A test can create an instance of SpyPostOffice, pass it to constructors or methods that
take an IPostOffice argument, exercise the System Under Test [66], and then inspect
its state, as implied by listing 11.7.

Listing 11.7 Assert that the expected reservation is in the postOffice collection. The
postOffice variable is a SpyPostOffice object.
(Restaurant/b85ab3e/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

Assert.Contains(expected, postOffice);

With that behaviour firmly in place, I started on a related feature. The system should
also send an email when you delete a reservation. I added a new method to the
IPostOffice interface, as shown in listing 11.8.

Listing 11.8 Second iteration of the IPostOffice interface. The highlighted line
indicates the new method, compared to listing 11.5.
(Restaurant/1811c8e/Restaurant.RestApi/IPostOffice.cs)
Click here to view code image

public interface IPostOffice

{

 Task EmailReservationCreated(Reservation reservation);

 Task EmailReservationDeleted(Reservation reservation);

}

Since I’d added a new method to the IPostOffice interface, I also had to implement
that method in the SpyPostOffice class. Since both the EmailReservationCreated
and EmailReservationDeleted methods take a Reservation argument, I could just
Add the reservation to the Test Spy [66] itself.

But as I started writing a unit test for the new behaviour, I realised that while I could
write an assertion like the one in listing 11.7, I could only verify that the Test Spy [66]
contained the expected reservation. I couldn’t verify how it got there; whether the spy
added it via the EmailReservationCreated or the EmailReservationDeleted
method.

I had to improve the ‘sensitivity’ of SpyPostOffice in order to be able to do that.

I’d already embarked on a set of changes that touched the production code. The
IPostOffice interface is part of the production code, and there was also a production
implementation of it (called SmtpPostOffice). I was in the process of making changes
to the production code, and all of a sudden, I realised that I had to refactor the test
code.

This is one of the many reasons that Git is such a game changer, even for individual
development. It’s an example of the manoeuvrability that it offers. I simply stashed4

my changes and independently edited the SpyPostOffice class. You can see the result
in listing 11.9.

4. git stash saves your dirty files in a ‘hidden’ commit and resets the repository to HEAD. Once you’re done with
whatever else you wanted to do, you can retrieve that commit with git stash pop.

Listing 11.9 Refactored SpyPostOffice (fragment). The Observation class is a
nested class, which isn’t shown. It just holds an Event and a Reservation.
(Restaurant/b587eef/Restaurant.RestApi.Tests/SpyPostOffice.cs)
Click here to view code image

internal class SpyPostOffice :

 Collection<SpyPostOffice.Observation>, IPostOffice

{

 public Task EmailReservationCreated(Reservation reservation)

 {

 Add(new Observation(Event.Created, reservation));

 return Task.CompletedTask;

 }

 internal enum Event

 {

 Created = 0

 }

I introduced a nested Observation class to keep track of both the type of interaction
and the reservation itself. I also changed the base class to a collection of observations.

This broke some of my tests, because an assertion like the one shown in listing 11.7
would look for a Reservation object in a collection of Observation objects. That
didn’t type-check, so I had to massage the test in place, too.

I managed to do that without touching the production code. When I was done, all tests
still passed. That’s no guarantee that I didn’t make a mistake while refactoring, but at
least it eliminates a category of errors5.

5. That the changes to the tests inadvertently strengthened some preconditions.

Once I had refactored the test code, I popped the stashed changes and continued where
I’d left off. Listing 11.10 shows the updated SpyPostOffice.

While these changes also involved editing the test code, they were safer because they
were only additions. I didn’t have to refactor existing test code.

Listing 11.10 Updated SpyPostOffice. It now implements the version of
IPostOffice shown in listing 11.8.
(Restaurant/1811c8e/Restaurant.RestApi.Tests/SpyPostOffice.cs)
Click here to view code image

internal class SpyPostOffice :

 Collection<SpyPostOffice.Observation>, IPostOffice

{

 public Task EmailReservationCreated(Reservation reservation)

 {

 Add(new Observation(Event.Created, reservation));

 return Task.CompletedTask;

 }

 public Task EmailReservationDeleted(Reservation reservation)

 {

 Add(new Observation(Event.Deleted, reservation));

 return Task.CompletedTask;

 }

 internal enum Event

 {

 Created = 0,

 Deleted = 1

 }

11.2 See Tests Fail
If you must edit both test and production code at the same time, consider verifying the
tests by making them fail deliberately, if only temporarily.

It’s surprisingly easy to write tautological assertions [105]. These are assertions that
never fail, even if the production code is faulty.

Don’t trust a test that you haven’t seen fail. If you changed a test, you can temporarily
change the System Under Test to make the test fail. Perhaps comment out some
production code, or return a hard-coded value. Then run the test you edited and verify
that with the temporary sabotage in place, the test fails.

Once more, Git offers manoeuvrability. If you have to change both tests and
production code at the same time, you can stage your changes and only then sabotage
the System Under Test. Once you’ve seen the test fail, you can discard the changes in
your working directory and commit the staged changes.

11.3 Conclusion
Be careful editing unit test code; there’s no safety net.

Some changes are relatively safe. Adding new tests, new assertions, or new test cases
tends to be safe. Applying refactorings built into your IDE also tends to be safe.

Other changes to test code are less safe, but may still be desirable. Test code is code
that you have to maintain. It’s as important that it fits in your brain as production code
does. Sometimes, then, you should refactor test code to improve its internal structure.

You may, for example, want to address duplication by extracting helper methods.
When you do that, make sure that you edit only the test code, and that you don’t touch
the production code. Check such changes to test code into Git as separate commits.
This doesn’t guarantee that you didn’t make mistakes in the test code, but it improves
your chances.

12 Troubleshooting

Professional software development consists of more than feature
development. There are also meetings, time reports, compliance activities,
and ... defects.

You run into errors and problems all the time. Your code doesn’t compile,
the software doesn’t do what it’s supposed to, it runs too slowly, et cetera.

The better you get at solving problems, the more productive you are. Most
of your troubleshooting skills may be based on “the shifting sands of
individual experience” [4], but there are techniques that you can apply.

This chapter presents some of them.

12.1 Understanding
The best advice I can think of is this:

Try to understand what’s going on.

If you don’t understand why something doesn’t work1, then make
understanding it a priority. I’ve witnessed a fair amount of ‘programming
by coincidence’ [50]: throw enough code at the wall to see what sticks.
When it looks as though the code works, developers move on to the next
task. Either they don’t understand why the code works, or they may fail to
understand that it doesn’t, really.

1. Or, if you don’t understand why something does work.

If you understand the code from the beginning, chances are that it’ll be
easier to troubleshoot.

12.1.1 Scientific Method
When a problem manifests, most people jump straight into troubleshooting
mode. They want to address the problem. For people who program by
coincidence [50], addressing a problem typically involves trying various
incantations that may have worked before on a similar problem. If the first
magic spell doesn’t work, they move on to the next. This can involve
restarting a service, rebooting a computer, running a tool with elevated
privileges, changing small pieces of code, calling poorly-understood
routines, etc. When it looks like the problem has disappeared, they call it a
day without trying to understand why [50].

Needless to say, this isn’t an effective way to deal with problems.

Your first reaction to a problem should be to understand why it’s happening.
If you have absolutely no idea, ask for help. Usually, though, you already
have some inclination of what the problem may be. In that case, adopt a
variation of the scientific method [82]:

Make a prediction. This is called a hypothesis.
Perform the experiment.

Compare outcome to prediction. Repeat until you understand what’s going
on.

Don’t be intimidated by the term ‘scientific method’. You don’t have to don
a lab coat or design a randomised controlled double-blind trial. But do try to
come up with a falsifiable hypothesis. This might simply be a prediction,
such as “if I reboot the machine, the problem goes away,” or “if I call this
function, the return value will be 42.”

The difference between this technique and ‘programming by coincidence’ is
that the goal of going through these motions isn’t to address the problem.

The goal is to understand it.

A typical experiment could be a unit test, with a hypothesis that if you run
it, it’ll fail. See subsection 12.2.1 for more details.

12.1.2 Simplify
Consider if removing some code can make a problem go away.

The most common reaction to a problem is to add more code to address it.
The unspoken line of reasoning seems to be that the system ‘works’, and
the problem is just an aberration. Thus, the reasoning goes, if the problem is
a special case, it should be solved with more code to handle that special
case.

This may occasionally be the case, but it’s more likely that the problem is a
manifestation of an underlying implementation error. You’d be surprised
how often you can solve problems by simplifying the code.

I’ve seen plenty of examples of such an ‘action bias’ in our industry. People
who solve problems I never have because I work hard to keep my code
simple:

People develop complex Dependency Injection Containers [25] instead of
just composing object graphs in code.

People develop complicated ‘mock object libraries’ instead of writing
mostly pure functions.

People create elaborate package restore schemes instead of just checking
dependencies into source control.

People use advanced diff tools instead of merging more frequently.

People use convoluted object-relational mappers (ORMs) instead of
learning (and maintaining) a bit of SQL.

I could go on.

To be fair, coming up with a simpler solution is hard. For example, it took
me a decade of erecting increasingly more elaborate contraptions in object-
oriented code before I found simpler solutions. It turns out that many things
that are difficult in traditional object-oriented programming are simple in
functional programming. Once I learned about some of these concepts, I
found ways to use them in object-oriented contexts, too.

The point is that a catchphrase like KISS2 is useless in itself, because how
does one keep things simple?

2. Keep It Simple, Stupid.

Youoftenhavetobe smart to keep it simple3, but look for simplicity anyway.
Consider if there’s a way you can solve the problem by deleting code.

3. Rich Hickey discusses simplicity in Simple Made Easy [45]. I owe much of my perspective on
simplicity to that talk.

12.1.3 Rubber Ducking
Before we discuss some specific problem-solving practices, I want to share
some general techniques. It’s not unusual to be stuck on a problem. How do
you get unstuck?

You may be staring at a problem with no clue as to how to proceed. As the
above advice goes, your first priority should be to understand the problem.
What do you do if you’re drawing a blank?

If you don’t manage your time, you can be stuck with a problem for a long
time, so do manage your time. Time-box the process. For example, set aside
25 minutes to look at the problem. If, after the time is up, you’ve made no
progress, take a break.

When you take a break, physically remove yourself from the computer. Go
get a cup of coffee. Something happens in your brain when you get out of
your chair and away from the screen. After a couple of minutes away from
the problem, you’ll likely begin to think about something else. Perhaps you

meet a colleague as you’re moving about. Perhaps you discover that the
coffee machine needs a refill. Whatever it is, it temporarily takes your mind
off the problem. That’s often enough to give you a fresh perspective.

I’ve lost count of the number of times I return to a problem after a stroll,
only to realise that I’ve been thinking about it the wrong way.

If walking about for a few minutes isn’t enough, try asking for help. If you
have a colleague to bother, do that.

I’ve experienced this often enough: I start explaining the problem, but
halfway in, I break off in mid-sentence: “Never mind, I’ve just gotten an
idea!”

The mere act of explaining a problem tends to produce new insight.

If you don’t have a colleague, you may try explaining the problem to a
rubber duck, such as the one shown in figure 12.1.

Figure 12.1 A rubber duck. Talk to it. It’ll solve your problems.

It doesn’t really have to be a rubber duck, but the technique is known as
rubber ducking because one programmer actually did use one [50].

Instead of using a rubber duck, I typically begin writing a question on the
Stack Overflow Q&A site. More often than not, I realise what the problem
is before I’m done formulating the question4.

4. When that happens, I don’t succumb to the sunk cost fallacy. Even if I’ve spent time writing the
question, I usually delete it because I deem that it’s not, after all, of general interest.

And if realisation doesn’t come, I have a written question that I can publish.

12.2 Defects
I once started in a new job in a small software startup. I soon asked my co-
workers if they’d like to use test-driven development. They hadn’t used it
before, but they were keen on learning new things. After I’d shown them
the ropes, they decided that they liked it.

A few months after we’d adopted test-driven development, the CEO came
by to talk to me. He mentioned in passing that he’d noticed that since we’d
started using tests, defects in the wild had significantly dropped.

That still makes me proud to this day. The shift in quality was so dramatic
that the CEO had noticed. Not by running numbers or doing a complex
analysis, but simply because it was so significant that it called attention to
itself.

You can reduce the number of defects, but you can’t eliminate them. But do
yourself a favour: don’t let them accumulate.

The ideal number of defects is zero.

Zero bugs isn’t as unrealistic as it sounds. In lean software development,
this is known as building quality in [82]. Don’t push defects in front of you
to ‘deal with them later’. In software development, later is never.

When a bug appears, make it a priority to address it. Stop what you’re
doing5 and fix the defect instead.

5. Isn’t it wonderful that with Git you can simply stash your current work?

12.2.1 Reproduce Defects as Tests
Initially, you may not even understand what the problem is, but when you
think that you do, perform an experiment: The understanding should enable
you to formulate a hypothesis, which again enables you to design an
experiment.

Such an experiment may be an automated test. The hypothesis is that when
you run the test, it’ll fail. When you actually do run the test, if it does fail,
you’ve validated the hypothesis. As a bonus, you also have a failing test
that reproduces the defect, and that will later serve as a regression test.

If, on the other hand, the test succeeds, the experiment failed. This means
that your hypothesis was wrong. You’ll need to revise it so that you can
design a new experiment. You may need to repeat this process more than
once.

When you finally have a failing test, ‘all’ you have to do is to make it pass.
This can occasionally be difficult, but in my experience, it usually isn’t. The
hard part of addressing a defect is understanding and reproducing it.

I’ll show you an example from the online restaurant reservation system.
While I was doing some exploratory testing I noticed something odd when I
updated a reservation. Listing 12.1 shows an example of the issue. Can you
spot the problem?

The problem is that the email property holds the name, and vice versa. It
seems that I accidentally switched them around somewhere. That’s the
initial hypothesis, but it may take a little investigation to figure out where.

Have I not been following test-driven development? Then how could this
happen?

Listing 12.1 Updating a reservation with a PUT request. A defect is manifest
in this interaction. Can you spot it?

Click here to view code image

PUT /reservations/21b4fa1975064414bee402bbe09090ec HTTP/1.1

Content-Type: application/json

{

 "at": "2022-03-02 19:45",

 "email": "pan@example.com",

 "name": "Phil Anders",

 "quantity": 2

}

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

{

 "id": "21b4fa1975064414bee402bbe09090ec",

 "at": "2022-03-02T19:45:00.0000000",

 "email": "Phil Anders",

 "name": "pan@example.com",

 "quantity": 2

}

This could happen because I’d implemented SqlReservationsRepository6

as a Humble Object [66]. This is an object so simple that you may decide
not to test it. I often use the rule of thumb that if the cyclomatic complexity
is 1,a test (also with a cyclomatic complexity of 1) may not be warranted.

6. See for example listing 4.19.

Even so, you can still make mistakes even when the cyclomatic complexity
is 1. Listing 12.2 shows the offending code. Can you spot the problem?

Given that you already know what the problem is, you can probably guess
that the Reservation constructor expects the email argument before the
name. Since both parameters are declared as string, though, the compiler
doesn’t complain if you accidentally swap them. This is another example of
stringly typed code [3], which we should avoid7.

7. One way to avoid stringly typed code is to introduce Email and Name classes that wrap their
respective string values. This prevents some cases of accidentally swapping these two arguments,
but as it turned out when I did it, it wasn’t entirely foolproof. You can consult the example code’s
Git repository if you’re interested in the details. The bottom line was that I felt that an integration
test was warranted.

Listing 12.2 The offending code fragment that causes the defect shown in
listing 12.1. Can you spot the programmer error?
(Restaurant/d7b74f1/Restaurant.RestApi/SqlReservationsRepository.cs)
Click here to view code image

using var rdr =

 await cmd.ExecuteReaderAsync().ConfigureAwait(false);

if (!rdr.Read())

 return null;

return new Reservation(

 id,

 (DateTime)rdr["At"],

 (string)rdr["Name"],

 (string)rdr["Email"],

 (int)rdr["Quantity"]);

It’s easy enough to address the defect, but if I can make the mistake once, I
can make it again. Thus, I want to prevent a regression. Before fixing the
code, write a failing test that reproduces the bug. Listing 12.3 shows the test
I wrote. It’s an integration test that verifies that if you update a reservation
in the database and subsequently read it, you should receive a reservation
equal to the one you saved. That’s a reasonable expectation, and it
reproduces the error because the ReadReservation method swaps name and
email, as shown in listing 12.2.

That PutAndReadRoundTrip test is an integration test that involves the
database. This is new. So far in this book, all tests have been running
without external dependencies. Involving the database is worth a detour.

12.2.2 Slow Tests
Bridging the gap between a programming language’s perspective on data
and a relational database is error-prone8, so why not test such code?

8. Proponents of object-relational mappers (ORMs) might argue that this makes the case for such a
tool. As I’ve stated elsewhere in this book, I consider ORMs a waste of time: they create more
problems than they solve. If you disagree, then feel free to skip this subsection.

In this subsection, you’ll see an outline of how to do that, but there’s a
problem: such tests tend to be slow. They tend to be orders of magnitudes
slower than in-process tests.

Listing 12.3 Integration test of SqlReservationsRepository.
(Restaurant/645186b/Restaurant.RestApi.SqlIntegrationTests/SqlReservatio
nsRepositoryTests.cs)
Click here to view code image

[Theory]

[InlineData("2032-01-01 01:12", "z@example.net", "z", "Zet",

4)]

[InlineData("2084-04-21 23:21", "q@example.gov", "q", "Quu",

9)]

public async Task PutAndReadRoundTrip(

 string date,

 string email,

 string name,

 string newName,

 int quantity)

{

 var r = new Reservation(

 Guid.NewGuid(),

 DateTime.Parse(date, CultureInfo.InvariantCulture),

 new Email(email),

 new Name(name),

 quantity);

 var connectionString = ConnectionStrings.Reservations;

 var sut = new SqlReservationsRepository(connectionString);

 await sut.Create(r);

 var expected = r.WithName(new Name(newName));

 await sut.Update(expected);

 var actual = await sut.ReadReservation(expected.Id);

 Assert.Equal(expected, actual);

}

The time it takes to execute a test suite matters, particularly for developer
tests that you continually run. When you refactor with the test suite as a
safety net, it doesn’t work if it takes half an hour to run all tests. When you

follow the Red Green Refactor process for test-driven development, it
doesn’t work if running the tests takes five minutes.

The maximum time for such a test suite should be ten seconds. If it’s much
longer than that, you’ll lose focus. You’ll be tempted to look at your email,
Twitter, or Facebook while the tests run.

You can easily eat into such a ten-second budget if you involve a database.
Therefore, move such tests to a second stage of tests. There are many ways
you can do this, but a pragmatic way is to simply create a second Visual
Studio solution to exist side-by-side with the day-to-day solution. When
you do that, remember to also update the build script to run this new
solution instead, as shown in listing 12.4.

Listing 12.4 Build script running all tests. The Build.sln file contains both
unit and integration tests that use the database. Compare with listing 4.2.
(Restaurant/645186b/build.sh)
Click here to view code image

#!/usr/bin/env bash

dotnet test Build.sln --configuration Release

The Build.sln file contains the production code, the unit test code, as well
as integration tests that use the database. I do day-to-day work that doesn’t
involve the database in another Visual Studio solution called
Restaurant.sln. That solution only contains the production code and the
unit tests, so running all tests in that context is much faster.

The test in listing 12.3 is part of the integration test code, so only runs when
I run the build script, or if I explicitly choose to work in the Build.sln
solution instead of in Restaurant.sln. It’s sometimes practical to do that, if
I need to perform a refactoring that involves the database code.

I don’t want to go into too much detail about how the test in listing 12.3
works, because it’s specific to how .NET interacts with SQL Server. If
you’re interested in the details, they’re all available in the accompanying
example code base, but briefly, all the integration tests are adorned with a

[UseDatabase] attribute. This is a custom attribute that hooks into the
xUnit.net unit testing framework to run some code before and after each test
case. Thus, each test case is surrounded with behaviour like this:

1. Create a new database and run all DDL9 scripts against it.

9. Data Definition Language, typically a subset of SQL. See listing 4.18 for an example.

2. Run the test.

3. Tear down the database.

Yes, each test creates a new database only to delete it again some
milliseconds later10. That is slow, which is why you don’t want such tests to
run all the time.

10. Whenever I explain this approach to integration testing with a database, I’m invariably met with
the reaction that one can, instead, test by rolling back transactions. Yes, except that this means
that you can’t test database transaction behaviour. Also, using transaction rollback may be faster,
but have you measured? I have, once, and found no significant difference. See also section 15.1
for my general position on performance optimisation.

Defer slow tests to a second stage of your build pipeline. You can do it as
outlined above, or by defining new steps that only run on your Continuous
Integration server.

12.2.3 Non-deterministic Defects
After running the restaurant reservation system for some time, the
restaurant’s maître d’ files a bug: once in a while, the system seems to allow
overbooking. She can’t deliberately reproduce the problem, but the state of
the reservations database can’t be denied. Some days contain more
reservations than the business logic shown in listing 12.5 allows. What’s
going on?

You peruse the application logs11 and finally figure it out. Overbooking is a
possible race condition. If a day is approaching capacity and two
reservations arrive simultaneously, the ReadReservations method might

return the same set of rows to both threads, indicating that a reservation is
possible. As figure 12.2 shows, each thread determines that it can accept the
reservation, so it adds a new row to the table of reservations.

11. See subsection 13.2.1.

This is clearly a defect, so you should reproduce it with a test. The problem
is, however, that this behaviour isn’t deterministic. Automated tests are
supposed to be deterministic, aren’t they?

It is, indeed, best if tests are deterministic, but do entertain, for a moment,
the notion that nondeterminism may be acceptable. In which way could this
be?

Tests can fail in two ways: A test may indicate a failure where none is; this
is called a false positive. A test may also fail to indicate an actual error; this
is called a false negative.

Listing 12.5 Apparently, there’s a bug in this code that allows overbooking.
What could be the problem?
(Restaurant/dd05589/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

[HttpPost]

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 var id = dto.ParseId() ?? Guid.NewGuid();

 Reservation? r = dto.Validate(id);

 if (r is null)

 return new BadRequestResult();

 var reservations = await Repository

 .ReadReservations(r.At)

 .ConfigureAwait(false);

 if (!MaitreD.WillAccept(DateTime.Now, reservations, r))

 return NoTables500InternalServerError();

 await Repository.Create(r).ConfigureAwait(false);

 await

PostOffice.EmailReservationCreated(r).ConfigureAwait(false);

 return Reservation201Created(r);

}

Figure 12.2 A race condition between two threads (e.g. two HTTP
clients) concurrently trying to make a reservation.

False positives are problematic because they introduce noise, and thereby
decrease the signal-to-noise ratio of the test suite. If you have a test suite
that often fails for no apparent reason, you stop paying attention to it [31].

False negatives aren’t quite as bad. Too many false negatives could
decrease your trust in a test suite, but they introduce no noise. Thus, at least,
you know that if a test suite is failing, there is aproblem.

One way to deal with the race condition in the reservation system, then, is
to reproduce it as the non-deterministic test in listing 12.6.

Listing 12.6 Non-deterministic test that reproduces a race condition.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyT
ests.cs)
Click here to view code image

[Fact]

public async Task NoOverbookingRace()

{

 var start = DateTimeOffset.UtcNow;

 var timeOut = TimeSpan.FromSeconds(30);

 var i = 0;

 while (DateTimeOffset.UtcNow - start < timeOut)

 await PostTwoConcurrentLiminalReservations(

 start.DateTime.AddDays(++i));

}

This test method is only an orchestrator of the actual unit test. It keeps
running the PostTwoConcurrentLiminalReservations method in listing
12.7 for 30 seconds, over and over again, to see if it fails. The assumption,
or hope, is that if it can run for 30 seconds without failing, the system may
actually have the correct behaviour.

There’s no guarantee that this is the case. If the race condition is as scarce
as hen’s teeth, this test could produce a false negative. That’s not my
experience, though.

When I wrote this test, it only ran for a few seconds before failing. That
gives me some confidence that the 30-second timeout is a sufficiently safe
margin, but I admit that I’m guessing; it’s another example of the art of
software engineering.

It turned out that the system had the same bug when updating existing
reservations (as opposed to creating new ones), so I also wrote a similar test
for that case.

Listing 12.7 The actual test method orchestrated by the code in listing 12.6.
It attempts to post two concurrent reservations. The state of the system is
that it’s almost sold out (the capacity of the restaurant is ten, but nine seats
are already reserved), so only one of those reservations should be accepted.
(Restaurant/98ab6b5/Restaurant.RestApi.SqlIntegrationTests/ConcurrencyT
ests.cs)
Click here to view code image

private static async Task PostTwoConcurrentLiminalReservations(

 DateTime date)

{

 date = date.Date.AddHours(18.5);

 using var service = new RestaurantService();

 var initialResp =

 await service.PostReservation(new

ReservationDtoBuilder()

 .WithDate(date)

 .WithQuantity(9)

 .Build());

 initialResp.EnsureSuccessStatusCode();

 var task1 = service.PostReservation(new

ReservationDtoBuilder()

 .WithDate(date)

 .WithQuantity(1)

 .Build());

 var task2 = service.PostReservation(new

ReservationDtoBuilder()

 .WithDate(date)

 .WithQuantity(1)

 .Build());

 var actual = await Task.WhenAll(task1, task2);

 Assert.Single(actual, msg => msg.IsSuccessStatusCode);

 Assert.Single(

 actual,

 msg => msg.StatusCode ==

HttpStatusCode.InternalServerError);

}

These tests are examples of slow tests that ought to be included only as
second-stage tests as discussed in subsection 12.2.2.

There are various ways you can address a defect like the one discussed
here. You can reach for the Unit of Work [33] design pattern. You can also
deal with the issue at the architectural level, by introducing a durable queue
with a single-threaded writer that consumes the messages from it. In any
case, you need to serialise the reads and the writes involved in the
operation.

I chose to go for a pragmatic solution: use .NET’s lightweight transactions,
as shown in listing 12.8. Surrounding the critical part of the Post method
with a TransactionScope effectively serialises12 the reads and writes. That
solves the problem.

12. Serialisability, here, refers to making sure that database transactions behave as though they were
serialised one after another [55]. It has nothing to do with converting objects to and from JSON
or XML.

Listing 12.8 The critical part of the Post method is now surrounded with a
TransactionScope, which serialises the read and write methods. The
highlighted code is new compared to listing 12.5.
(Restaurant/98ab6b5/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

using var scope = new TransactionScope(

 TransactionScopeAsyncFlowOption.Enabled);

var reservations = await Repository

 .ReadReservations(r.At)

 .ConfigureAwait(false);

if (!MaitreD.WillAccept(DateTime.Now, reservations, r))

 return NoTables500InternalServerError();

await Repository.Create(r).ConfigureAwait(false);

await

PostOffice.EmailReservationCreated(r).ConfigureAwait(false);

scope.Complete();

In my experience, most defects can be reproduced as deterministic tests, but
there’s a residual that eludes this ideal. Multithreaded code infamously falls
into that category. Of two evils, I prefer nondeterministic tests over no test
coverage at all. Such tests will often have to run until they time out in order
to give you confidence that they’ve sufficiently exercised the test case in
question. You should, therefore, put them in a second stage of tests that only
runs on demand and as part of your deployment pipeline.

12.3 Bisection
Some defects can be elusive. When I developed the restaurant system I ran
into one that took me most of a day to understand. After wasting hours
following several false leads, I finally realised that I couldn’t crack the nut
only by staring long enough at the code. I had to use a method.

Fortunately, such a method exists. We can call it bisection for lack of a
better word. In all its simplicity, it works like this:

1. Find a way to detect or reproduce the problem.

2. Remove half of the code.

3. If the problem is still present, repeat from step 2. If the problem goes away,
restore the code you removed, and remove the other half. Again, repeat
from step 2.

4. Keep going until you’ve whittled down the code that reproduces the
problem to a size so small that you understand what’s going on.

You can use an automated test to detect the problem, or use some ad hoc
way to detect whether the problem is present or absent. The exact way you
do this doesn’t matter for the technique, but I find that an automated test is
often the easiest way to go about it, because of the repetition involved.

I often use this technique when I rubber duck by writing a question on
Stack Overflow. Good questions on Stack Overflow should come with a
minimal working example. In most cases I find that the process of
producing the minimal working example is so illuminating that I get
unstuck before I have a chance to post the question.

12.3.1 Bisection with Git
You can also use the bisection technique with Git to identify the commit
that introduced the defect. I ultimately used that with the problem I ran into.

I’d added a secure resource to the REST API to list the schedule for a
particular day. A restaurant’s maître d’ can make a GET request against that
resource to see the schedule for the day, including all reservations and who
arrives when. The schedule includes names and emails of guests, so it
shouldn’t be available without authentication and authorisation13.

13. For an example of what this looks like, see subsection 15.2.5.

This particular resource demands that a client presents a valid JSON Web
Token (JWT). I’d developed this security feature with test-driven
development and I had enough tests to feel safe.

Then one day, as I was interacting with the deployed REST API, I could no
longer access this resource! I first thought that I’d supplied an invalid JWT,
so I wasted hours troubleshooting that. Dead end.

It finally dawned on me that this security feature had worked. I’d interacted
with the deployed REST API earlier and seen it work. At one time it
worked, and now it didn’t. In between these two known states a commit
must have introduced the defect. If I could identify that particular code
change, I might have a better chance of understanding the problem.

Unfortunately, there was some 130 commits between those two extremes.

Fortunately, I’d found an easy way to detect the problem, if given a commit.

This meant that I could use Git’s bisect feature to identify the exact
commit that caused the problem.

Git can run an automated bisection for you if you have an automated way to
detect the problem. Usually, you don’t. When you bisect, you’re looking for
a commit that introduced a defect that went unnoticed at the time. This
means that even if you have an automated test suite, the tests didn’t catch
that bug.

For that reason, Git can also bisect your commits in an interactive session.
You start such a session with git bisect start, as shown in listing 12.9.

Listing 12.9 The start of a Git bisect session. I ran it from Bash, but you
can run it in any shell where you use Git. I’ve edited the terminal output by
removing irrelevant data that Bash tends to show, so that it fits on the page.

Click here to view code image

~/Restaurant ((56a7092...))

$ git bisect start

~/Restaurant ((56a7092...)|BISECTING)

This starts an interactive session, which you can tell from the Git
integration in Bash (it says BISECTING). If the current commit exhibits the
defect you’re investigating, you mark it as shown in listing 12.10

Listing 12.10 Marking a commit as bad in a bisect session.

Click here to view code image

$ git bisect bad

~/Restaurant ((56a7092...)|BISECTING)

If you don’t provide a commit ID, Git is going to assume that you meant the
current commit (in this case 56a7092).

You now tell it about a commit ID that you know is good. This is the other
extreme of the range of commits you’re investigating. Listing 12.11 shows
how that’s done.

Listing 12.11 Marking a commit as good in a bisect session. I’ve trimmed
the output a little to make it fit on the page.

Click here to view code image

$ git bisect good 58fc950

Bisecting: 75 revisions left to test after this (roughly 6

steps)

[3035c14...] Use InMemoryRestaurantDatabase in a test

~/Restaurant ((3035c14...)|BISECTING)

Notice that Git is already telling you how many iterations to expect. You
can also see that it checked out a new commit (3035c14) for you. That’s the
half-way commit.

You now have to check whether or not the defect is present in this commit.
You can run an automated test, start the system, or any other way you’ve
identified to answer that question.

In my particular case, the half-way commit didn’t have the defect, so I told
Git, as shown in listing 12.12.

Listing 12.12 Marking the half-way commit as good in a bisect session.
I’ve trimmed the output a little to make it fit on the page.

Click here to view code image

$ git bisect good

Bisecting: 37 revisions left to test after this (roughly 5

steps)

[aa69259...] Delete Either API

~/Restaurant ((aa69259...)|BISECTING)

Again, Git estimates how many more steps are left and checks out a new
commit (aa69259).

Listing 12.13 Finding the commit responsible for the defect, using a Git
bisect session.

Click here to view code image

$ git bisect bad

Bisecting: 18 revisions left to test after this (roughly 4

steps)

[75f3c56...] Delete redundant Test Data Builders

~/Restaurant ((75f3c56...)|BISECTING)

$ git bisect good

Bisecting: 9 revisions left to test after this (roughly 3

steps)

[8f93562...] Extract WillAcceptUpdate helper method

~/Restaurant ((8f93562...)|BISECTING)

$ git bisect good

Bisecting: 4 revisions left to test after this (roughly 2

steps)

[1c6fae1...] Extract ConfigureClock helper method

~/Restaurant ((1c6fae1...)|BISECTING)

$ git bisect good

Bisecting: 2 revisions left to test after this (roughly 1 step)

[8e1f1ce] Compact code

~/Restaurant ((8e1f1ce...)|BISECTING)

$ git bisect good

Bisecting: 0 revisions left to test after this (roughly 1 step)

[2563131] Extract CreateTokenValidationParameters method

~/Restaurant ((2563131...)|BISECTING)

$ git bisect bad

Bisecting: 0 revisions left to test after this (roughly 0

steps)

[fa0caeb...] Move Configure method up

~/Restaurant ((fa0caeb...)|BISECTING)

$ git bisect good

2563131c2d06af8e48f1df2dccbf85e9fc8ddafc is the first bad

commit

commit 2563131c2d06af8e48f1df2dccbf85e9fc8ddafc

Author: Mark Seemann <mark@example.com>

Date: Wed Sep 16 07:15:12 2020 +0200

Extract CreateTokenValidationParameters method

Restaurant.RestApi/Startup.cs | 32 +++++++++++++++++++---------

1 file changed, 19 insertions(+), 13 deletions(-)

~/Restaurant ((fa0caeb...)|BISECTING)

I repeated the process for each step, marking the commit as either good or
bad, depending on whether or not my verification step passed. This is
shown in listing 12.13.

After just eight iterations, Git found the commit responsible for the defect.
Notice that the last step tells you which commit is the ‘first bad commit’.

Once I saw the contents of the commit, I immediately knew what the
problem was and could easily fix it. I’m not going to tire you with a
detailed description of the error, or how I fixed it. If you’re interested, I

wrote a blog post [101] with all the details, and you can also peruse the Git
repository that accompanies the book.

The bottom line is that bisection is a potent technique for finding and
isolating the source of an error. You can use it with or without Git.

12.4 Conclusion
There’s a significant degree of personal experience involved in
troubleshooting. I once worked in a team where a unit test failed on one
developer’s machine, while it passed on another programmer’s laptop. The
exact same test, the same code, the same Git commit.

We could have just shrugged and found a workaround, but we all knew that
making the symptom go away without understanding the root cause tends to
be a myopic strategy. The two developers worked together for maybe half
an hour to reduce the problem to a minimal working example. Essentially, it
boiled down to string comparison.

On the machine where the test failed, a comparison of strings would
consider "aa" less than "bb",and "bb" less than "cc". That seems fine,
doesn’t it?

On the machine where the test succeeded,however, "bb" was still less than
"cc" ,but "aa" was greater than "bb". What’s going on?

At this point, I got involved, took one look at the repro and asked both
developers what their ‘default culture’ was. In .NET, the ‘default culture’ is
an Ambient Context [25] that knows about culture-specific formatting rules,
sort order, and so on.

As I expected, the machine that considered "aa" greater than "bb" was
running with the Danish default culture, whereas the other machine used
US English. The Danish alphabet has three extra letters (Æ, Ø, and Å) after
Z, but the Å used to be spelled Aa in the old days, and since that spelling
still exists in proper nouns, the aa combination is considered to be

equivalent to å. Å being the last letter in the alphabet is considered greater
than B.

It took me less than a minute to figure out what the problem was, because
I’d run into enough problems with Danish sort orders earlier in my career.
That’s still the shifting sands of individual experience—the art of software
engineering.

I’d never been able to identify the problem if my colleagues hadn’t first
used a methodology like bisection to reduce the problem to a simple
symptom. Being able to produce a minimal working example is a
superpower in software troubleshooting.

Notice what I haven’t discussed in this chapter: debugging.

Too many people rely exclusively on debugging for troubleshooting. While
I do occasionally use the debugger, I find the combination of the scientific
method, automated testing, and bisection more efficient. Learn and use
these more universal practices, because you can’t use debugging tools in
your production environment.

13 Separation of Concerns

Imagine changing your application’s database schema and as a result, the
font size increases in the emails that the system sends.

Why would the email template font size depend on the database schema?
Good question. It ought not to.

In general, don’t put business logic in your user interface. Don’t put data
import and export code in your security code. This principle is known as
separation of concerns. It aligns with Kent Beck’s aphorism:

“Things that change at the same rate belong together. Things that change at different rates belong
apart.” [8]

An overarching theme of this book is that code should fit in your head. As
subsections 7.1.3 and 7.2.7 argues, keep code blocks small and isolated.
Keeping things apart is important.

Chapter 7 was mostly about principles and thresholds for decomposition.
Why and when should you decompose bigger blocks of code into smaller
ones? Chapter 7 didn’t talk much about how to decompose.

In this chapter, I’ll attempt to address that question.

13.1 Composition
Composition and decomposition are intricately connected. Ultimately, the
purpose of writing code is to develop working software. You can’t
arbitrarily tear things apart. While decomposition is important, as figure
13.1 illustrates, you must be able to recompose what you decomposed.

Figure 13.1 Decomposition is intimately related to composition.
Decompose so that you can compose working software from the parts.

Thus, models of composition are illustrative. There’s more than one way to
compose software components1 together, and they aren’t equally good. I
may as well drop the bomb right away: object-oriented composition has
problems.

1. I use the term component loosely. It could mean object, module, library, widget, or something else.
Some programming languages and platforms come with specific notions of what a component
might be, but these typically aren’t compatible with another language’s notion. Like unit test or
mock, the term is vague.

13.1.1 Nested Composition
Ultimately, software interacts with the real world. It paints pixels on the
screen, saves data in databases, sends emails, posts on social media,
controls industrial robots, et cetera. All of these are what we in the context
of Command Query Separation call side effects.

Since side effects are software’s raison d’être, it seems only natural to
model composition around them. This is how most people tend to approach
object-oriented design. You model actions.

Object-oriented composition tends to focus on composing side effects
together. The Composite [39] design pattern may be the paragon of this
style of composition, but most of the patterns in Design Patterns [39] rely
heavily on composition of side effects.

As illustrated in figure 13.2, this style of composition relies on nesting
objects in other objects, or side effects in other side effects. Since your goal
should be code that fits in your head, this is a problem.

Figure 13.2 The typical composition of objects (or, rather, methods on
objects) is nesting. The more you compose, the less the composition fits
in your brain. In this figure, each star indicates a side effect that you
care about. Object A encapsulates one side effect, and object B two.
Object C composes A and B, but also adds a fourth side effect. That’s
already four side effects that you need to keep in mind when trying to
understand the code. This easily gets out of hand: object E composes a
total of eight side effects, and F nine. Those don’t fit well in your brain.

To illustrate how this is problematic, I’m going to do something that I’ve so
far abstained from doing. I’ll show you bad code. Don’t write code like
listings 13.1 or 13.3.

Listing 13.1 Bad code: A Controller action interacting with a nested
composition. Listing 13.6 shows a better alternative.
(Restaurant/b3dd0fe/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

public IRestaurantManager Manager { get; }

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 Reservation? r = dto.Validate();

 if (r is null)

 return new BadRequestResult();

 var isAccepted =

 await Manager.Check(r).ConfigureAwait(false);

 if (!isAccepted)

 return new StatusCodeResult(

 StatusCodes.Status500InternalServerError);

 return new NoContentResult();

}

Looking at listing 13.1 you may wonder what’s wrong with it. After all, its
cyclomatic complexity is only 4, there are 17 lines of code, and only 4
objects activated. The problem is hidden by one of those four objects: the
Manager, which is an injected dependency. It’s the IRestaurantManager
interface in listing 13.2. Can you tell what the problem is?

Listing 13.2 The IRestaurantManager interface used in listing 13.1 and
implemented in listing 13.3.
(Restaurant/b3dd0fe/Restaurant.RestApi/IRestaurantManager.cs)
Click here to view code image

public interface IRestaurantManager

{

 Task<bool> Check(Reservation reservation);

}

Try doing the exercise of X’ing out the method name. If you do, you’re left
with Task<bool> Xxx(Reservation reservation), which looks like an
asynchronous predicate. This must be a method that checks if something
about a reservation is true or false. But if you look at listing 13.1 in that
light, the Post method only uses the Boolean value to decide which HTTP
status code to return.

Did the programmer forget to save the reservation in the database?

Probably not. You decide to look at the implementation of
IRestaurantManager in listing 13.3. It does a bit of validation and then
calls Manager.TrySave .

Listing 13.3 Bad code: The implementation of the IRestaurantManager
interface looks like it has a side effect.
(Restaurant/b3dd0fe/Restaurant.RestApi/RestaurantManager.cs)
Click here to view code image

public async Task<bool> Check(Reservation reservation)

{

 if (reservation is null)

 throw new ArgumentNullException(nameof(reservation));

 if (reservation.At < DateTime.Now)

 return false;

 if (reservation.At.TimeOfDay < OpensAt)

 return false;

 if (LastSeating < reservation.At.TimeOfDay)

 return false;

 return await

Manager.TrySave(reservation).ConfigureAwait(false);

}

If you continue to pull at this particular string of spaghetti, you’ll ultimately
discover that Manager.TrySave both saves the reservation in the database
and returns a Boolean value. Based on what you’ve learned so far in this
book, what’s wrong with that?

It violates the Command Query Separation principle. While the method
looks like a Query, it has a side effect. Why is this a problem?

Recall Robert C. Martin’s definition:

“Abstraction is the elimination of the irrelevant and the amplification of the essential” [60]

By hiding a side effect in a Query, I’ve eliminated something essential. In
other words, more is going on in listing 13.1 than meets the eye. The
cyclomatic complexity may be as low as 4, but there’s a hidden fifth action
that you ought to be aware of.

Granted, five chunks still fit in your brain, but that single hidden interaction
is an extra 14 percent towards the budget of seven. It doesn’t take many
hidden side effects before the code no longer fits in your head.

13.1.2 Sequential Composition
While nested composition is problematic, it isn’t the only way to compose
things. You can also compose behaviour by chaining it together, as
illustrated in figure 13.3.

Figure 13.3 Sequential composition of two functions. The output from
Where becomes the input to Allocate.

In the terminology of Command Query Separation, Commands cause
trouble. Queries, on the other hand, tend to cause little trouble. They return
data which you can use as input for other Queries.

The entire restaurant example code base is written with that principle in
mind. Consider the WillAccept method in listing 8.13. After all the Guard
Clauses [7] it first creates a new instance of the Seating class. You can
think of a constructor as a Query under the condition that it has no side
effects2.

2. Constructors really, really shouldn’t have side effects!

The next line of code filters the existingReservations using the Overlaps
method in listing 13.4 as a predicate. The built-in Where method is a Query,
and so is Overlaps.

The relevantReservations collection is the output of one Query, but
becomes the input to the next Query: Allocate, shown in listing 13.5.

Listing 13.4 Overlaps method. This is a Query, since it has no side effects
and returns data. (Restaurant/e9a5587/Restaurant.RestApi/Seating.cs)
Click here to view code image

internal bool Overlaps(Reservation other)

{

 var otherSeating = new Seating(SeatingDuration, other);

 return Start < otherSeating.End && otherSeating.Start <

End;

}

Listing 13.5 Allocate method – another Query.
(Restaurant/e9a5587/Restaurant.RestApi/MaitreD.cs)
Click here to view code image

private IEnumerable<Table> Allocate(

 IEnumerable<Reservation> reservations)

{

 List<Table> availableTables = Tables.ToList();

 foreach (var r in reservations)

 {

 var table = availableTables.Find(t =>

t.Fits(r.Quantity));

 if (table is { })

 {

 availableTables.Remove(table);

 if (table.IsCommunal)

 availableTables.Add(table.Reserve(r.Quantity));

 }

 }

 return availableTables;

}

Finally, the WillAccept method returns whether there’s Any table among the
availableTables that Fits the candidate.Quantity.The Any method is
another built-in Query, and Fits shown in listing 8.14 is a predicate.

Compared to figure 13.3, you can say that the Seating constructor,
seating.Overlaps , Allocate,and Fits are sequentially composed.

None of these methods have side effects, which means that once
WillAccept returns its Boolean value, you can forget about how it reached
that result. It truly eliminates the irrelevant and amplifies the essential.

13.1.3 Referential Transparency
There’s a remaining issue that Command Query Separation fails to address:
predictability. While a Query has no side effects that your brain has to keep
track of, it could still surprise you if you get a new return value every time
you call it – even with the same input.

This may not be quite as bad as side effects, but it’ll still tax your brain.
What happens if we institute an extra rule on top of Command Query
Separation? The rule that Queries must be deterministic?

This would mean that a Query can’t rely on random number generators,
GUID creation, the time of day, day of the month, or any other data from
the environment. That would include the contents of files and databases.
That sounds restrictive, so what’s the benefit?

A deterministic method without side effects is referentially transparent. It’s
also known as a pure function. Such functions have some very desirable
qualities.

One of these qualities is that pure functions readily compose. If the output
of one function fits as the input for another, you can sequentially compose
them. Always. There are deep mathematical reasons for
that3,butsufficeittosay that composition is ingrained into the fabric that pure
functions are made of.

3. One perspective is offered by category theory, on which functional programming languages like
Haskell draw heavily. For a great introduction for programmers, see Bartosz Milewski’s Category
Theory for Programmers [68].

Another quality is that you can replace a pure function call with its result.
The function call is equal to the output. The only difference between the
result and the function call is the time it takes to get it.

Think about that in terms of Robert C. Martin’s definition of abstraction.
Once a pure function returns, the result is all you have to care about. How
the function arrived at the result is an implementation detail. Referentially
transparent functions eliminate the irrelevant and amplify the essential. As
figure 13.4 illustrates, they collapse arbitrary complexity to a single result; a
single chunk that fits in your brain.

Figure 13.4 Pure function (left) collapsing to its result (right).
Regardless of complexity, a referentially transparent function call can be
replaced by its output. Thus, once you know what the output is, that’s
the only thing you need to keep track of as you read and interpret the
calling code.

On the other hand, if you want to know how the function works, you zoom
in on its implementation, in the spirit of fractal architecture. That might be
the WillAccept method in listing 8.13. This method is, in fact, not just a
Query, it’s a pure function. When you look at the source code of that
function, you’ve zoomed in on it, and the surrounding context is irrelevant.
It operates exclusively on its input arguments and immutable class fields.

When you zoom out again, the entire function collapses into its result. It’s
the only thing your brain needs to keep track of.

What about all the nondeterministic behaviour and side effects? Where do
they go?

Push all of that to the edge of the system; your Main method, your
Controllers, your message handlers, et cetera. For example, consider listing
13.6 as a superior alternative to listing 13.1.

To be clear, the Post method itself isn’t referentially transparent. It creates a
new GUID (nondeterminism), queries the database (nondeterminism), gets
the current date and time (nondeterminism), and conditionally saves the
reservation in the database (side effect).

Listing 13.6 Sequentially composed Post method. Contrast with listing
13.1. (Restaurant/e9a5587/Restaurant.RestApi/ReservationsController.cs)
Click here to view code image

[HttpPost]

public async Task<ActionResult> Post(ReservationDto dto)

{

 if (dto is null)

 throw new ArgumentNullException(nameof(dto));

 var id = dto.ParseId() ?? Guid.NewGuid();

 Reservation? r = dto.Validate(id);

 if (r is null)

 return new BadRequestResult();

 var reservations = await Repository

 .ReadReservations(r.At)

 .ConfigureAwait(false);

 if (!MaitreD.WillAccept(DateTime.Now, reservations, r))

 return NoTables500InternalServerError();

 await Repository.Create(r).ConfigureAwait(false);

 return Reservation201Created(r);

}

Once it has collected all the data, it calls the pure WillAccept function.
Only if WillAccept returns true does the Post method allow the side effect
to happen.

Keep nondeterministic Queries and behaviour with side effects close to the
edge of the system and write complex logic as pure functions. This style of
programming is known as functional core, imperative shell [11], because
programming with mostly pure functions is the realm of functional
programming.

Do yourself a favour and learn functional programming4. It fits better in
your head.

4. To learn functional programming I recommend that you try learning a proper functional
programming language. Haskell is best, but the learning curve is steep. Find one that fits your
preferences. Most of what you learn about functional programming you can carry back to improve
your object-oriented code bases. The entire example code base for this book is written in the
functional core, imperative shell style, even though it’s written in the ostensibly object-oriented
language C#.

13.2 Cross-Cutting Concerns
There’s a set of concerns that tend to cut across disparate features. Not
surprisingly, they’re called cross-cutting concerns. They include [25]:

Logging

Performance monitoring

Auditing

Metering

Instrumentation

Caching

Fault tolerance

Security

You may not need all of these, but once you need one, that particular
concern tends to apply to many features.

For example, if you find that you’ll need to add a Circuit Breaker [73] to
your web service calls, you probably need to do it everywhere you invoke
that web service. Or, if you need to cache your database queries, you need
to do that consistently.

In my experience, cross-cutting concerns have one thing in common:
They’re best implemented with the Decorator [39] design pattern. Let me
show you an example.

13.2.1 Logging
Most of the items in the above list are variations on logging, in the sense
that they involve writing data to some sort of log. Performance monitoring
writes performance measurements to a performance log, auditing writes
audit data to an audit trail, metering writes usage data to what will
eventually become an invoice, and instrumentation writes debug
information to a log.

You’ll likely only need to implement a subset of the above cross-cutting
concerns. Whether you need them depends on the requirements of the
system.

You should, however, add a minimum of logging to your system. Your
software will run into unforeseen circumstances when in use. It may crash
or exhibit defects. In order to troubleshoot problems, you’ll need to
understand them. Logs give you invaluable insight into a running system.

As a minimum, you should make sure that all unhandled exceptions are
logged. You may not need to take explicit action for that to happen. For
example, ASP.NET automatically logs unhandled exceptions on both
Windows and Microsoft Azure.

Keep an eye on the log. The ideal number of unhandled exceptions is zero.
If you see an exception in the log, treat it as a defect. See section 12.2 for
details.

While some defects are run-time crashes, others manifest as incorrect
behaviour. The system keeps running while behaving incorrectly. You saw a
few examples in section 12.2: The system allowed overbooking, and email
address and name were swapped. You’ll need more logs than just those
unhandled exceptions to understand what’s going on.

13.2.2 Decorator
The Decorator design pattern is also sometimes called Russian dolls after
the traditional Russian matryoshka dolls that nest inside of each other,
shown in figure 13.5.

Like the dolls, polymorphic objects can also nest inside each other. It’s a
great way to add unrelated functionality to an existing implementation. As
an example, you’ll see how to add logging to the database access interface
in listing 13.7.

The code base already contains a class that implements the interface. It’s
called SqlReservationsRepository, and it performs the work of reading
from and writing to the underlying SQL Server database. While you want to
log what this class does, you should separate these concerns. Don’t edit
SqlReservationsRepository just to add logging. Add a Decorator. Listing
13.8 shows the class declaration and constructor. Notice that while it

implements the IReservationsRepository interface, it also wraps another
IReservationsRepository object.

Figure 13.5 Russian matryoshka dolls that can nest inside each other
are often used as a metaphor for the Decorator design pattern.

Listing 13.7 Yet another version of the IReservationsRepository
interface, this time with multi-tenant support. See for example listings 10.11
or 8.3 for other variations.
(Restaurant/3bfaa4b/Restaurant.RestApi/IReservationsRepository.cs)
Click here to view code image

public interface IReservationsRepository

{

 Task Create(int restaurantId, Reservation reservation);

 Task<IReadOnlyCollection<Reservation>> ReadReservations(

 int restaurantId, DateTime min, DateTime max);

 Task<Reservation?> ReadReservation(Guid id);

 Task Update(Reservation reservation);

 Task Delete(Guid id);

}

Since it implements the interface, it must implement all the methods. This is
always possible, because it can trivially call the same method on Inner.
Each method, however, gives the Decorator an opportunity to intercept the
method call. As an example, listing 13.9 shows how it logs around the
ReadReservation method.

Listing 13.8 The class declaration and constructor for the
LoggingReservationsRepository Decorator.
(Restaurant/3bfaa4b/Restaurant.RestApi/LoggingReservationsRepository.cs
)
Click here to view code image

public sealed class LoggingReservationsRepository :

IReservationsRepository

{

 public LoggingReservationsRepository(

 ILogger<LoggingReservationsRepository> logger,

 IReservationsRepository inner)

 {

 Logger = logger;

 Inner = inner;

 }

 public ILogger<LoggingReservationsRepository> Logger { get;

}

 public IReservationsRepository Inner { get;

}

Listing 13.9 The decorated ReadReservation method.
(Restaurant/3bfaa4b/Restaurant.RestApi/LoggingReservationsRepository.cs
)
Click here to view code image

public async Task<Reservation?> ReadReservation(Guid id)

{

 var output = await

Inner.ReadReservation(id).ConfigureAwait(false);

 Logger.LogInformation(

 "{method}(id: {id}) => {output}",

 nameof(ReadReservation),

 id,

 JsonSerializer.Serialize(output?.ToDto()));

 return output;

}

It first calls ReadReservation on the Inner implementation to get the
output. Before returning the output it logs that the method was called,
using the injected Logger. Listing 13.10 shows a typical log entry produced
by that code.

The other methods of LoggingReservationsRepository work the same
way. They call the Inner implementation, log the result, and return.

You have to configure ASP.NET’s built-in Dependency Injection Container
to use the Decorator around the ‘real’ implementation. Listing 13.11 shows
how. Some Dependency Injection Containers natively know about the
Decorator design pattern, but the built-in one doesn’t. Fortunately, you can
register services with a lambda expression to get around that limitation.

Listing 13.10 Example of a log entry produced by listing 13.9. The actual
log entry is a single, wide line. I’ve edited it for readability by adding line
breaks and a bit of indentation.

Click here to view code image

2020-11-12 16:48:29.441 +00:00 [Information]

Ploeh.Samples.Restaurants.RestApi.LoggingReservationsRepository

:

ReadReservation(id: 55a1957b-f85e-41a0-9f1f-6b052f8dcafd) =>

{

 "Id":"55a1957bf85e41a09f1f6b052f8dcafd",

 "At":"2021-05-14T20:30:00.0000000",

 "Email":"elboughs@example.org",

 "Name":"Elle Burroughs",

 "Quantity":5

}

Listing 13.11 Configuring a Decorator with the ASP.NET framework.
(Restaurant/3bfaa4b/Restaurant.RestApi/Startup.cs)
Click here to view code image

var connStr = Configuration.GetConnectionString("Restaurant");

services.AddSingleton<IReservationsRepository>(sp =>

{

 var logger =

 sp.GetService<ILogger<LoggingReservationsRepository>>

();

 return new LoggingReservationsRepository(

 logger,

 new SqlReservationsRepository(connStr));

});

The example restaurant reservation system has other dependencies than
IReservationsRepository . For example, it also sends emails, using an
IPostOffice interface. To log these interactions, it uses a
LoggingPostOffice Decorator equivalent to
LoggingReservationsRepository .

You can address most cross-cutting concerns with Decorators. For caching
you can implement a Decorator that first tries to read from a cache. Only if
the value is not in the cache does it read the underlying data store, in which
case it updates the cache before returning. This is known as a read-through
cache.

When it comes to fault tolerance my previous book [25] contains a Circuit
Breaker [73] example. It’s also possible to address security concerns with
Decorators, but most frameworks come with built-in security features, and
it’s better to use those. See subsection 15.2.5 for an example.

13.2.3 What to Log
I once worked with a team that had found just the right amount of logging.
We were developing and maintaining a suite of REST APIs. Each API
would log details5 of each HTTP request and the HTTP response it

returned. It would also log all database interactions, including input
arguments and the entire result set returned by the database.

5. Except sensitive information like JSON Web Tokens, which we redacted.

I don’t recall that there was a single defect that we couldn’t track down and
understand. It was just the right amount of logging.

Most development organisations log too much. Particularly when it comes
to instrumentation, I often see examples of ‘overlogging’. When logging is
done to support future troubleshooting, you can’t predict what you’re going
to need, so it’s better to log too much data than too little. Or, at least, that’s
the rationale for ‘overlogging’.

It’d be even better to log only what you need. Not too little, not too much,
but just the right amount of logging. Obviously, we should call this
Goldilogs.

How do you know what to log? How do you know that you’ve logged
everything that you’ll need, when you don’t know your future needs?

The key is repeatability. Just like you should be able to reproduce builds
and repeat deployments, you should also be able to reproduce execution.

If you can replay what happened when a problem manifested itself, you can
troubleshoot it. You need to log just enough data to enable you to repeat
execution. How do you identify that data?

Consider a line of code such as listing 13.12. Would you log that?

Listing 13.12 Would you log this statement?

Click here to view code image

int z = x + y;

It might make sense to log what x and y are, particularly if these values are
run-time values (e.g. entered by a user, the result of a web service call, etc.).

You might do something like listing 13.13.

Listing 13.13 Logging input values might make sense.

Click here to view code image

Log.Debug($"Adding {x} and {y}.");

int z = x + y;

Would you ever log the result, though, as in listing 13.14?

Listing 13.14 Does it make sense to log the output of addition?

Click here to view code image

Log.Debug($"Adding {x} and {y}.");

int z = x + y;

Log.Debug($"Result of addition: {z}");

There’s no reason to log the result of the calculation. Addition is a pure
function; it’s deterministic. If you know the inputs, you can always repeat
the calculation to get the output. Two plus two is always four.

The more your code is composed from pure functions, the less you need to
log [103]. This is one of the many reasons that referential transparency is so
desirable, and why you should favour the functional core, imperative shell
style of architecture.

Log all impure actions, but no more.

Log everything that you can’t reproduce. That includes all nondeterministic
code such as getting the current date, time of day, generating a random
number, reading from a file or database, et cetera. It also includes
everything that has side effects. All else you don’t need to log.

Of course, if your code base doesn’t separate pure functions from impure
actions, you’ll have to log everything.

13.3 Conclusion
Separate unrelated concerns. Changes to the user interface shouldn’t
involve editing the database code, or vice versa.

Separation of concerns imply that you should separate – that is, decompose
– the various parts of your code base. Decomposition is only valuable if you
can recompose the disparate parts.

This sounds like a job for object-oriented design, but despite its original
promise, it has turned out to be ill-suited to the task. While you can achieve
object-oriented decomposition, you have to jump through various hoops to
make it work. Most developers don’t know how to do this, so instead tend
to compose objects by nesting them.

When you do that, you tend to sweep important behaviour under the rug.
That makes it harder to fit the code in your head.

Sequential composition, where pure functions return data that can be used
as input for other pure functions, offers a saner alternative; one that does fit
in your head.

While I don’t expect organisations to throw their so-called object-oriented
code bases overboard for Haskell, I do recommend moving towards
functional core, imperative shell.

This makes it easier to isolate those parts of the code base that implement
impure actions. These are typically also the parts where you need to apply
cross-cutting concerns, which is best done with Decorators.

14 Rhythm

I’ve visited and worked with many software development organisations.
Some follow one process, and others a different one. Multiple organisations
tell me that they follow a certain process, but what they actually do differs.

Some teams do daily stand-ups, except that they really only do them every
other day when they feel like it.

I’ve worked in a team where we did do a daily stand-up every morning.
One team member, however, always managed to centre the meeting around
his desk, where he’d remain sitting. He was also the sort of person who’d
completely disregard the what-I-did-yesterday, what-I-am-going-to-do-
today, any-blockers format and instead ramble on for fifteen minutes while
my feet hurt more and more from standing.

I’ve worked in a team with a nice Kanban board, except that they’d spend
significant time firefighting. Those nice work items provided poor insight to
the work that was actually being done.

One of the best teams I’ve worked with had almost no process. It didn’t
matter because they’d implemented Continuous Deployment. That team
delivered features faster than stakeholders could absorb. Instead of the
incessant is-it-done-yet? questions, team members would sometimes ask
stakeholders if they had had time to admire the features they’d asked for.
Most commonly, the answer was that they hadn’t had time to do that.

I don’t intend to tell you how to organise. Whether you follow Scrum, XP
[5], PRINCE2, or daily chaos, I hope this book contains ideas that you can
use. While I don’t wish to dictate any particular software development
process, I’ve come to realise that having a loose rhythm or structure to the
day can be beneficial. This applies to how you work, personally, and how a
team might work.

14.1 Personal Rhythm
Every day may be different, but I find it useful to have a loose structure as a
default. No daily activity should be mandatory, because that only causes
stress if you miss it one day, but structure can help you get something done.

Although my wife would probably tell you that I’m one of the most
disciplined people she knows, I, too, tend to procrastinate. Having a rhythm
to my day helps me minimise wasting my time.

14.1.1 Time-Boxing
Work in time-boxed intervals, like 25 minutes. Then take a five-minute
break. You probably know this as the Pomodoro technique, but it’s not. The
Pomodoro technique is more involved [18], and I find the extra activities
irrelevant.

Working for 25 minutes, however, has some benefits. Some of these may
seem obvious, but others are less evident.

In the obvious department, 25 minutes of uninterrupted work makes a big
task seem more manageable. Even if a work item seems daunting or
unappealing, it’s easier to tell yourself that you ‘can at least look at it for 25
minutes’. My experience is that the hardest part of most tasks is to get
started.

Be sure to keep a countdown visible. You can use a physical kitchen timer,
such as the one shown in figure 14.1, or a piece of software. I use a program
that always shows the remaining number of minutes in the system tray1 of
my screen. The advantage of a visible countdown is that it counters the
need to ‘just’ check Twitter, email, or similar. Whenever I get such an urge,
I glance at the countdown and think to myself: “Okay, I’ve 16 more minutes
left of this time box. I can do that, and then I’ll have a break.”

1. On Windows the system tray is usually placed on the lower right of the screen. It’s also called the
notification area.

Figure 14.1 You probably call it the Pomodoro technique when you
work in 25-minute time boxes. It’s probably not, but here’s a pomodoro
kitchen timer from which that technique takes its name.

Breaks offer a less obvious advantage. When you take a break, make it a
proper break. Get out of your chair, walk around, leave the room. Do
yourself the favour and get away from your computer. Subsection 12.1.3
already discussed this particular benefit. It’s striking how often a change of
scenery gives you a new perspective.

Even if you don’t feel stuck, taking a break could make you realise that
you’ve just wasted the last fifteen minutes. That doesn’t sound nice, but I’d
rather waste fifteen minutes than three hours.

More than once, I’ve been in the zone whenthetimergoesoff.When
everything just flows, having to stop and get away from the computer is
almost painful. I’ve found, however, that if I do, I sometimes come back
and realise that what I’ve just been doing can never work, because of some
problem that’ll manifest itself later.

Had I just stayed in the zone, I could have wasted hours instead of minutes.

Programmers love being in the zone because it feels so productive, but
there’s no guarantee that it is. It’s not a contemplative state of mind. You
may be writing many lines of code, but there’s no guarantee they’ll be
useful.

The most curious aspect is this: If what you’re doing in the zone actually is
useful, a five-minute break doesn’t matter. I’ve often found that even after a
couple of minutes away from the computer, I can drop right back into the
zone if I feel that I’m on the right track.

14.1.2 Take Breaks
I once developed a piece of open-source software that became moderately
popular. It became popular enough that users started to suggest various
features and capabilities that I hadn’t originally planned for. The first
version worked adequately, but I understood that I had to rewrite most of
the code so that it would be more flexible.

The new design required much contemplation. Fortunately, at that time, I
was working in a job where I had half an hour of commute each way. I did
most of the design work for that new version biking2 back and forth.

2. Copenhagen is a bicycle city, and I bike if possible. It’s faster and provides a bit of exercise. While
sometimes lost in thought, I wasn’t a danger to other people.

Being away from the computer is remarkably productive. I’ve had most of
my good ideas doing something else. I regularly exercise, and many an
insight has come to me while running, or in the shower, or doing the dishes.
I recall many a Eureka! moment being on my feet. I don’t recall having had
a single revelation while in front of the computer.

I think this happens because my System 1 [51] (or some other subconscious
process) keeps churning away at a problem even when I’m not aware of it.
That only works, though, if I’ve already spent time in front of the computer,
working on the problem. You can’t just lie on your sofa and expect a steady
stream of enlightenment to flow through you. It’s the alternation that seems
to do the trick.

If you’re working in an office setting, going for a walk may be difficult.
Still, I think it may be more productive than sitting in front of the computer
all day.

If possible, take breaks away from your computer. Do something else for
twenty minutes or half an hour. Try to combine it with physical activity if
you can. It doesn’t have to be hard physical exercise; it could be just going
for a walk. For example, if you have a grocery store nearby, you could go
shopping. I do that every other day. Not only do I get a break in my work
day, shopping is efficient because there’s few other people when I go.

Keep in mind that intellectual work is different from physical work. You
can’t measure productivity by how long you work. In fact, the longer you
work, the less productive you become. Long hours may even lead to
negative productivity, because you’ll make mistakes that you’ll then have to
waste time correcting. Don’t work long hours.

14.1.3 Use Time Deliberately
Don’t just let the day happen to you. I don’t intend to turn this book into a
personal productivity lecture. There are plenty of such books available
already. At a minimum, though, I’ll advise you to use your time
deliberately. For inspiration, I’ll tell you about some routines that work for
me.

The Pragmatic Programmer suggests that you should learn a new
programming language every year [50]. I’m not sure that I agree with that
particular rule. Knowing more than one language is a good idea, but one
every year seems excessive. There are other things to learn as well: test-
driven development, algorithms, specific libraries or frameworks, design
patterns, property-based testing, et cetera.

I don’t try to learn a new language every year, but I do try to expand my
knowledge. Unless I have appointments, I start my day with two 25-minute
time boxes where I try to educate myself. These days, I usually read a
textbook and do the exercises. Earlier in my career, I started each morning
answering questions on Usenet3 and later on Stack Overflow. You learn a
lot by teaching. I’ve also done programming katas.

3. Yes, that was a long time ago!

Another productivity tip is to limit the amount of meetings you go to. I once
consulted a company that held meetings all the time. For a while, I held a
central role, so I’d get many meeting requests.

I noticed that many of the meetings were actually requests for information.
Stakeholders would hear that I’d been in a meeting without them, so they’d
request one to learn what had been discussed. That’s understandable, but
inefficient, so I started to write things down.

When people would request a meeting with me, I’d ask them for an agenda.
This was often enough to make them cancel the meeting. In other cases,
once I saw the agenda, I’d send them what I’d already written down.
They’d immediately get the information they needed, instead of waiting
hours or days for a meeting. Meetings don’t scale; documentation does.

14.1.4 Touch Type
In 2013 a conflict between the Danish teachers’ union and their public
employers erupted and schools closed for an indefinite time. The conflict
lasted 25 days, but no one knew how long it’d be when it started.

My daughter was ten years old at the time. I didn’t want her lounging
around at home, so I put together a curriculum. One of the things I had her
do was to follow an online touch-typing tutorial one hour a day. When the
conflict was over she was touch-typing, and she’s been typing like that
since.

When Covid-19 locked down the schools in 2020, my thirteen-year-old son
got the same assignment. He, too, now touch-types. It takes a few weeks,
one hour aday,tolearn.

I’ve worked with programmers who can’t touch type, and I’ve noticed how
inefficient it makes them. Not because they don’t type fast enough; after all,
typing isn’t the bottleneck in software development. You spend more time
reading code than typing it, so productivity strongly correlates to code
readability.

Still, it’s not the typing speed, or lack thereof, which makes hunt-and-peck
typing inefficient. The problem is that when you’re always searching the
keyboard for the next key to hit, you don’t notice what’s happening on the
screen.

Modern IDEs come with many bells and whistles. They tell you when you
make mistakes. I’ve been touch-typing since my single-digit years, but I’m
not a particularly accurate typist. I use the delete key quite a bit.

While I tend to mistype when writing a text like this one, I make fewer
typing mistakes when coding. This is because statement completion and
other IDE features ‘do the typing’ for me.

I’ve seen programmers who are so busy hunting for the next key that they
miss all the help that the IDE offers. Worse, if they mistype, they don’t see
the mistake until they try to compile or run the code. When they finally look
at the screen, they’re baffled that something doesn’t work.

When I pair with such programmers, I’ve been looking at a typo for tens of
seconds, so it’s painfully clear to me what’s wrong, but for the hunt-and-
peck typist it’s a new context, and it takes time to reorient.

Learn to touch type. IDE is an acronym for Integrated Development
Environment, but for modern tools, perhaps Interactive Development
Environment would be more descriptive. If, however, you don’t look at it,
little interaction can take place.

14.2 Team Rhythm
When you work in a team, you’ll have to align your personal rhythm with
the team’s. Most likely the team has recurring activities. You may do a daily
stand-up, hold sprint retrospectives every other week, or go to lunch at a
particular time of day.

As already stated, I’m not going to dictate any particular process, but there
are some activities I think you should schedule. You could even make a
checklist out of them.

14.2.1 Regularly Update Dependencies
Code bases have dependencies. When you read from a database, you use an
SDK for that particular brand of database. When you write a unit test, you
use a unit testing framework. When you want to authenticate users with a
JSON Web Token, you use a library for that.

Such dependencies typically come in packages, delivered via a package
manager. .NET has NuGet, JavaScript has NPM, Ruby has RubyGems, and
so on. That type of distribution means that packages may frequently be
updated. A package author can easily do Continuous Deployment, so every
time there’s a bug fix or a new feature, you may get a new version of the
package.

You don’t have to update to the newest version every time one comes out. If
you don’t need the new feature, you can skip that version.

On the other hand, it’s dangerous to fall too far behind. Some package
authors are conscientious about breaking changes while others are more
cavalier. The longer you wait between updates, the more breaking changes
will pile up. It’ll get harder and harder to move forward, and you could end
up in a situation where you no longer dare upgrade the dependencies.

This goes for language and platform versions as well. Ultimately, you could
be stuck on such an old version of your language that it becomes difficult to
hire new employees. This happens.

The irony is that if you update regularly, it’s painless. In the Git log of the
example code repository, you can see that I’ve updated the dependencies
once in a while. Listing 14.1 shows a excerpt of the log.

Listing 14.1 Git log excerpt showing package updates, plus a few
surrounding commits for good measure.

Click here to view code image

0964099 (HEAD) Add a schedule link to each day

2295752 Rename test classes

fdf2a2f Update Microsoft.CodeAnalysis.FxCopAnalyzers NuGet

9e5d33a Update Microsoft.AspNetCore.Mvc.Testing NuGet pkg

f04e6eb Update coverlet.collector NuGet package

3bfc64f Update Microsoft.NET.Test.Sdk NuGet package

a2bebea Update System.Data.SqlClient NuGet package

34b818f Update xunit.runner.visualstudio NuGet package

ff5314f Add cache header on year calendar

df8652f Delete calendar flag

How often should you update dependencies? That depends on the number,
and how stable those dependencies are. For the example code base, I felt
that it was fine to check for updates every other month or so. A larger code
base might have an order of magnitude more packages, and that alone could
justify a more frequent schedule.

Another factor is how often particular dependencies change. Some only
change rarely while others blow through revisions. You’ll have to
experiment to find the best frequency for your code base, but until you
know what it is, pick an arbitrary rhythm. It might make sense to attach this
work item to another regular activity. If, for example, you’re using Scrum
with two-week sprints, you could schedule the package update activity to be
the first thing you do in a new sprint4.

4. Don’t make it the last thing in a sprint, because then it’ll be sacrificed for something more urgent.

14.2.2 Schedule Other Things
The reason you should schedule dependency updates is that this is
something that’s easy to forget. It doesn’t make sense to check for updates
every day, so it’s unlikely to become part of anyone’s work rhythm.

It’s also the type of problem that once you start noticing it, it’s too late.
There are other problems that fall in that category.

Certificates5 expire, but they typically have lifetimes measured in years. It’s
easy to forget to renew them, but if you forget it, the software will stop
working. When that happens, perhaps none of the original developers are

left on the team. It’s better to proactively renew certificates, so schedule this
activity.

5. X.509 certificates, for example.

The same goes for domain names. They expire after several years. Make
sure someone renews them.

Another example is database backups. It’s easy to automate backups, but do
you know whether they work? Can you actually restore the system from a
backup? Consider doing that as a regular exercise. It’s a disappointment to
discover that the backups don’t work when you need them for real.

14.2.3 Conway’s Law
I had my own office in the first job I had. This was in 1994 when open
office landscapes weren’t as common as they are today. I’ve never had my
own office since then6. Employers have learned that open offices are less
expensive, and agile processes like XP recommend sitting together [5].

6. This isn’t entirely true; I’ve been self-employed for years, and when I’m not at a client, I work
from home. I’m writing this book in my home office.

To be clear, I don’t like open office spaces. I find them noisy and
distracting. On the other hand, I grant that face-to-face communication
fosters cooperation. If you’ve ever tried having a written discussion in a
chat forum, about a GitHub issue, or about a feature specification, you
know that they can drag on for days or weeks. You can often resolve what
looks like a conflict by talking to the other person for fifteen minutes.

Even if a technical discussion doesn’t ‘feel personal’, there’s something
about face-to-face discussions that helps resolve misunderstandings.

On the other hand, if you rely entirely on talking and sitting together, you
risk instituting an oral culture. Nothing gets written down, you must have
the same discussions over and over, and repeatedly answer the same
questions. Knowledge is lost when people move on.

Consider this through the lens of Conway’s law:

“Any organization that designs a system [...] will inevitably produce a design whose structure is a
copy of the organization’s communication structure.” [21]

If everybody sits together and can arbitrarily communicate with anyone
else, the result could be a system with no discernable architecture, but
plenty of ad hoc communication. Spaghetti code [15], in other words.

Consider how the way you organise the work impacts the code base.

While I dislike open offices and ad hoc chatter, I don’t recommend the other
extreme either. Rigid hierarchies and chains of command are hardly
conducive to productivity. Personally, I like to organise work (even
corporate work) the way open-source software is typically organised, with
pull requests, reviews, and mostly written communication. I like this
because it enables asynchronous software development [96].

You don’t have to do it like that, but organise your team in a way that
fosters both communication and the software architecture you prefer. The
point is to be aware that team organisation and architecture are connected.

14.3 Conclusion
You can find plenty of books about personal productivity, so I wanted to
avoid most of the topics that such books normally discuss. How you work is
personal, and how a team is organised displays much variety.

I did, however, want to discuss a few things that have taken me many years
to realise. Take breaks; get away from the computer. I get my best ideas
when I’m doing something else. Perhaps so will you.

15 The Usual Suspects

What about performance? What about security? Dependency analysis?
Algorithms? Architecture? Computer science?

All of these subjects are relevant for software engineering. They’re
probably the topics that occur to you when you hear the term software
engineering. They are the usual suspects. Until now, I’ve pretended that
they don’t exist. It’s not because I consider them irrelevant, but because I
find that comprehensive treatments already exist.

When I consult with development teams, I rarely find that I have to teach
them about performance. Often, I encounter a team member who knows
more about algorithms and computer science than I do. And it’s not that
hard to find someone who knows more about security than me.

I wrote this book because it’s my experience that the topics it covers are the
practices that I do need to teach. The book, I hope, fills a hole (the
exclamation point in figure 15.1), even if it’s just an amalgamation of
wisdom I’ve picked up from pioneers who came before me.

Just because I wanted to focus on those other things, it doesn’t mean that
I’ve been ignoring the usual suspects. As the penultimate chapter, I want to
discuss how I approach performance, security, and a few other things.

Figure 15.1 The usual suspects of software engineering: architecture,
algorithms, performance, security, and the approach to code exemplified
by such books as Clean Code [61] and Code Complete [65]. You can
find great treatments of such topics elsewhere, but I felt that there was a
knowledge gap without comprehensive treatment. This book is an
attempt at filling that gap.

15.1 Performance
I’ve noticed a common pattern when I introduce an idea that someone
doesn’t like. Sometimes, I can tell from their facial expressions that they’re
struggling to come up with a counter-argument to ward off the anathema. A
little while goes by, and then it comes:

“But what about performance?”

Indeed, what about performance? I admit that the narrow focus on
performance that some people exhibit annoys me, but I think I understand
where it comes from. I think that it’s part legacy, and part apotropaic
deflection.

15.1.1 Legacy
For decades, computers were slow. They could calculate faster than a
person could, but compared to modern computers, they were glacial. At the
time the industry started to organise itself into the academic discipline of
computer science, performance was a ubiquitous concern. If you used
inefficient algorithms it could make a program unusable.

No wonder that a typical computer science curriculum would include
algorithms, computational complexity theory with its big O notation, and a
focus on memory footprint. The problem is that this curriculum seems to
have ossified.

Performance still matters to a degree, but modern computers are so fast that
you often can’t tell the difference. Does it matter that a particular method
returns in 10 or 100 nanoseconds? Well, if you call it in a tight loop, it
might, but often, it doesn’t matter.

I’ve met plenty of developers who will waste hours shaving a few
microseconds off a method call, only to then query a database with the
result1. There’s little reason to optimise an operation if you then combine it
with another operation that’s orders of magnitudes slower. If you must
focus on performance, at least optimise the bottlenecks.

1. In case the folly of this is lost on the reader: querying a database typically takes time measured in
milliseconds. To be fair, everything gets faster all the time, so this may not be true when you read
this.

Performance should never be the primary centre of attention; correctness
should. Gerald Weinberg tells a story “to drive home this point to those
whose minds are tangled in questions of efficiency and other secondary
matters” [115]. It involves a derailed software project and a programmer
brought in to fix it. The software in question is hopelessly complicated, has
tons of bugs, and is on the brink of being cancelled. Our hero comes up
with a rewrite that works and presents it to the original developers.

The main developer of the original software asks how long it takes to run
the program. When hearing the answer, he dismisses the new idea because

the defective program runs ten times faster. To which our protagonist
answers:

“But your program doesn’t work. If the program doesn’t have to work, I can write one that takes
one millisecond per card2” [115]

2. This was back in the days of punch cards.

Make it work first, and then you can think about performance. Maybe.
Perhaps security is also more important. Perhaps you should ask other
stakeholders how to prioritise.

And if it turns out that stakeholders prioritise performance, measure!
Modern compilers are sophisticated; they may inline method calls, optimise
poorly structured loops of yours, et cetera. The machine code that they
generate may look nothing like you imagine it looks. Additionally,
performance is highly sensitive to things such as what hardware you are
using, what software you have installed, what other processes are doing,
and a host of other factors [59]. You can’t reason about performance. If you
think it’s important, measure.

15.1.2 Legibility
Another reason some people focus on performance is harder to explain. I
think it has to do with legibility. I picked up this idea from a book on a
completely different topic called Seeing Like a State [90].

It argues that some schemes are instituted to make the obscure intelligible.
As an example, it explains how the introduction of cadastral maps (figure
15.2) was a solution to that sort of problem. Medieval villages were
organised in an oral culture where only the locals knew who had rights to
use which plot of land when. This made it impossible for kings to directly
levy taxes. Only the local nobles had enough local knowledge to tax the
peasants [90].

As feudalism yielded to centralised states, kings needed ways to bypass
their dependency on local nobles. A cadastral map was a way to introduce

legibility to an opaque world [90].

When you do that, however, much may be lost in translation. For instance,
in medieval villages the right to use a plot of land might be tied to other
criteria than just who you were. You could, for example, have the right to
grow a crop on a particular plot of land during the growing season. After
harvest, all land would be converted into commons, with no individual
rights associated until next growing season. Cadastral maps couldn’t
capture such complicated ‘business rules’, so they instituted and codified
simplified ownership. Those maps didn’t record the current state of affairs.
They changed reality.

Figure 15.2 Cadastral maps were introduced by sovereign kings to
bypass their dependency on local nobles. They introduce legibility at the
expense of detail. Be careful that you don’t mistake the map for the
terrain.

There’s a lot of that going on in software development. Since it’s so
intangible, we try to introduce all sorts of measurements and processes in
attempts to be able to grasp it. Once we’ve introduced such devices, they
shape our perception. As the adage goes, to one holding a hammer the
world looks like a nail.

To one holding a hammer the world looks like a nail.

I once consulted a company to help them on their way towards Continuous
Deployment. After I’d worked some weeks with various developers, one of
the managers took me aside and asked me:

“Which of my developers are good?”

He wasn’t a ‘technical’ manager. He’d never programmed. He couldn’t tell.

I found the question unethical, since those developers had trusted me while
I sat with them; I didn’t answer.

Managers have a hard time managing software development, because how
do you measure something as intangible as that? They usually institute
proxy measurements like hours worked. If you’ve ever been billed by the
hour, you know how perverse those incentives are.

I think that for some people, the fixation on performance is really an
attempt to come to grips with the intangible nature of their profession.
Being measurable, performance becomes the cadastral map of software
engineering. For some, the art inherent in software engineering is a source
of great discomfort. Making it a question of performance makes it legible.

15.2 Security

Software security is like insurance. You don’t really want to pay for it, but
if you don’t, you’ll be sorry that you didn’t.

As with so many other aspects of software engineering, security is about
finding an appropriate balance. There’s no such thing as a completely
secure system. Even if you put it on a computer disconnected from the
Internet, surrounded by armed guards, someone might bribe, force, or hustle
their way to it.

You’ll have to work with other stakeholders to identify security threats and
appropriate mitigations.

15.2.1 STRIDE
You can use STRIDE threat modelling [48] to identify potential security
issues. It’s a thought exercise or workshop where you think of as many
relevant threats to your system as you can. To help you think of potential
issues, you can use the STRIDE acronym as a kind of checklist.

Spoofing. Attackers try to pose as someone they’re not in order to gain
unauthorised access to the system.

Tampering. Attackers try to tamper with data, for example through SQL
injection.

Repudiation. Attackers deny that they’ve performed an action, such as
receiving an item they’ve paid for.

Information disclosure. Attackers can read data they shouldn’t be able to
read. Examples include man-in-the-middle attacks and SQL injection.

Denial of service. Attackers attempt to make the system unavailable to its
regular users.

Elevation of privilege. Attackers attempt to gain more permissions than
they have.

Threat modelling occupies a space that involves both programmers, IT
professionals, and other stakeholders such as ‘business owners’. Some

issues are best dealt with in code, others in network configuration, and
some you really can’t do much about.

Denial of service, for example, can’t be entirely prevented for an online
system. When Microsoft developed the STRIDE model, much of their
network-facing code was written in C and C++. These languages are
vulnerable to buffer overflows [4], so you could often make systems crash
or hang by sending them malevolent input.

While managed code such as C# and Java prevent many such issues, you
can’t guarantee that a distributed denial of service attack can’t bring your
system to its knees. You can try to provision enough capacity to deal with a
spike in traffic, but if the attack is sufficiently massive, there’s little you can
do.

Different systems have varying threat profiles. A mobile phone app or
desktop application is susceptible to different kinds of attacks than a web
service.

Let’s threat-model the restaurant reservation system. As you may recall, it’s
a REST API that enables clients to make and edit reservations.
Additionally, a restaurant’s maître d’ can make a GET request against a
resource to see the schedule for a day, including all reservations and who
arrives when. The schedule includes the names and emails of guests.

I’m going to go through each of the STRIDE items as if it was a checklist,
but I’m only going to do it informally to give you an idea of the thought
process. You might want to consider a more systematic execution.

15.2.2 Spoofing
Is the system vulnerable to spoofing? Yes, when you make a reservation,
you can claim to be whoever you like. You can just give Keanu Reeves as
the name, and the system will accept that. Is that a problem? It could be, but
we’ll probably have to ask restaurant owners if that would give them
problems.

After all, the current implementation of the system doesn’t make any
decisions based on the name, so spoofing isn’t going to change its
behaviour.

15.2.3 Tampering
Is the system vulnerable to tampering? It has a table of reservations in a
SQL Server database. Could someone edit this data without being
authorised to do so?

There’s more than one scenario to consider.

The REST API itself enables you to edit your reservation via PUT and
DELETE HTTP requests. Just as you can make a new reservation without
authenticating yourself, you can edit one if you have the resource address
(i.e. the URL). Should we be concerned?

Yes and no. Each resource address uniquely identifies one reservation. One
part of the resource address is the reservation ID, which is a GUID. There’s
no way for an attacker to guess a GUID, so this should give us some
comfort3.On the other hand, when you make a new reservation, the
response to the POST request includes a Location header with the resource
address. A man in the middle would be able to intercept the response and
see the address.

3. If you think that this sounds like security by obscurity I can see why. It isn’t, though. A GUID is as
difficult to guess as any other 128-bit cryptographic key. After all, it’s just a 128-bit number.

There’s a simple mitigation of this threat: require HTTPS. A secure
connection shouldn’t be optional; it should be mandatory. This is a good
example of the sort of mitigation that’s better handled by an IT professional.
It’s typically a question of configuring the service appropriately, rather than
code that you have to write.

Another tampering scenario to consider is direct database access. Would it
be possible to gain direct access to the database? A substantial answer to
this question is to secure the deployment of the database, or trust that a

cloud-based database is sufficiently protected. Again, the competencies
required point to IT professionals rather than programmers.

An attacker could also gain access to the database via SQL injection. The
responsibility for mitigating such a threat falls squarely on programmers.
The restaurant reservation code base uses named parameters as shown in
listing 15.1. When using ADO.NET, this is the recommended mitigation
against SQL injection.

Listing 15.1 Use of named SQL parameter @id.
(Restaurant/e89b0c2/Restaurant.RestApi/SqlReservationsRepository.cs)
Click here to view code image

public async Task Delete(Guid id)

{

 const string deleteSql = @"

 DELETE [dbo].[Reservations]

 WHERE [PublicId] = @id";

 using var conn = new SqlConnection(ConnectionString);

 using var cmd = new SqlCommand(deleteSql, conn);

 cmd.Parameters.AddWithValue("@id", id);

 await conn.OpenAsync().ConfigureAwait(false);

 await cmd.ExecuteNonQueryAsync().ConfigureAwait(false);

}

Since protection against SQL injection attacks is the responsibility of
developers, make sure to look for it during code reviews and when pair
programming.

15.2.4 Repudiation
Can users of the system deny that they performed an action? Yes, even
worse, users can make reservations and subsequently never show up. This is
a problem that plagues not only restaurants, but also doctors, hairdressers,
and many other places where reservations are made.

Can we mitigate this threat? We could require users to authenticate and
perhaps even use a digital signature to record an audit trail. We could also
ask users to pay a reservation fee with a credit card. We should, however,
ask the restaurant owners what they think.

Most restaurants might be concerned that such draconian measures would
scare customers away. This is another example where security involves
finding a good balance. You can make a system so secure that it no longer
fulfils its purpose.

15.2.5 Information Disclosure
Is the reservation system vulnerable to information disclosure? It doesn’t
store passwords, but it does store guests’ email addresses, which we should
consider as personally identifiable information. They shouldn’t fall into the
wrong hands.

We should also consider each reservation’s resource address (URL)
sensitive. If youhavesuchanaddress,youcan DELETE the resource. You could
use that to gain access to a sold-out restaurant by deleting someone else’s
reservation.

How could an attacker gain access to such information? Perhaps with a
man-in-the-middle attack, but we’ve already decided to use HTTPS, so feel
safe in that regard. SQL injection could be another attack vector, but we’ve
also already decided to address that concern. I think that we don’t have to
worry too much about that.

There is, however, one remaining concern. A restaurant’s maître d’ can
make a GET request against a resource to see the schedule for a day,
including all reservations and who arrives when. The schedule includes the
names and emails of guests, so that the guests can identify themselves when
they arrive. Listing 15.2 shows such an interaction with the mitigation
already in place.

Listing 15.2 An example schedule GET request and its corresponding
response. Compared to what the actual example system produces, I’ve
simplified both the request and the response to highlight the important bits.

Click here to view code image

GET /restaurants/2112/schedule/2021/2/23 HTTP/1.1

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInCI6IkpXVCJ9.eyJ...

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

{

 "name": "Nono",

 "year": 2021,

 "month": 2,

 "day": 23,

 "days": [{

 "date": "2021-02-23",

 "entries": [{

 "time": "19:45:00",

 "reservations": [{

 "id": "2c7ace4bbee94553950afd60a86c530c",

 "at": "2021-02-23T19:45:00.0000000",

 "email": "anarchi@example.net",

 "name": "Ann Archie",

 "quantity": 2

 }]

 }]

 }]

}

The mitigation is to require the maître d’ to authenticate. I’ve chosen JSON
Web Token as the authentication mechanism. If the client doesn’t present a
valid token with a valid role claim, it receives a 403 Forbidden response.

You can even write integration tests like the one in listing 15.3 to verify
correct behaviour.

Only the schedule resource requires authentication, because it’s the only
one that contains sensitive information. While the restaurants don’t wish to
scare customers away by requesting that they authenticate, it’s reasonable to
demand of employees that they do.

Listing 15.3 Test that verifies if the client doesn’t present a valid JSON
Web Token with the "MaitreD" role claim, the API rejects the request with
a 403 Forbidden response. In this test, the only role claims are "Foo" and
"Bar". (Restaurant/0e649c4/Restaurant.RestApi.Tests/ScheduleTests.cs)
Click here to view code image

[Theory]

[InlineData(1, "Hipgnosta")]

[InlineData(2112, "Nono")]

[InlineData(90125, "The Vatican Cellar")]

public async Task GetScheduleWithoutRequiredRole(

 int restaurantId,

 string name)

{

 using var api = new SelfHostedApi();

 var token =

 new JwtTokenGenerator(new[] { restaurantId }, "Foo",

"Bar")

 .GenerateJwtToken();

 var client = api.CreateClient().Authorize(token);

 var actual = await client.GetSchedule(name, 2021, 12, 6);

 Assert.Equal(HttpStatusCode.Forbidden, actual.StatusCode);

}

15.2.6 Denial of Service
Can an attacker transmit a stream of bytes to the REST API to make it
crash? If they can, I think that the issue is out of our hands.

An API written in a high-level language like C#, Java, or JavaScript doesn’t
work by manipulating pointers. The sort of buffer overflow that makes a
system crash can’t happen with managed code. Or rather, if it does, it’s not
a bug in the user code; it’d be a defect in the platform. There’s nothing we
can do to mitigate that sort of threat, apart from keeping the production
system up to date.

Would a distributed denial of service attack be a problem? It probably
would. We should talk to our IT professionals and ask if there’s something

they can do.

We might also consider if we could make the system more resilient to
unexpected high volumes of traffic. For some systems, that’s probably a
good idea. A kind of system closely related to a restaurant reservation
system would be a system that sells concert tickets. A popular artist giving
a stadium concert could easily swamp a system with thousands of requests
per second when the tickets are released.

One way to make such a system resilient to load spikes is to architect it
accordingly. You could, for example, put all potential writes on a durable
queue while reads are based off materialised views. This suggest a CQRS-
like architecture, which is beyond the scope of this book.

Such an architecture is more complex than handling writes as they happen.
It’d be possible to architect the restaurant reservation system like that, but
we (my pretend stakeholders and I) decided that it didn’t present a good
return on investment.

In threat modelling, it’s okay to identify a threat only to decide not to
address it. Ultimately, it’s a business decision. Just make sure that the rest
of your organisation understands the risks.

15.2.7 Elevation of Privilege
Would it be possible for an attacker to somehow start out as a regular user,
but then through some clever trick give him- or herself administrator rights?

Once more, SQL injection is a common vulnerability also in this category.
If attackers can execute arbitrary SQL commands on the database, they can
also spawn external processes on the operating system4.

4. On SQL Server, for example, you can run the xp_cmdshell stored procedure. Starting with SQL
Server 2005, however, it’s disabled by default. Don’t enable it.

An effective remedy is to run the database and all other services with as
restricted permissions as possible. Don’t run the database as administrator.

Since we’ve already decided to be aware of SQL injection attacks when we
write code, I’m not so concerned about this kind of threat.

This concludes the STRIDE threat model example for the restaurant
reservation system.

Clearly, there’s much more to security engineering than this, but as
someone who’s not a professional security expert, that’s how I tend to
approach it. If during threat modelling I identify an issue I’m not sure how
to tackle, I have a friend I can call.

15.3 Other Techniques
Performance and security are perhaps the two largest aspects of ‘traditional’
software engineering, but there are oodles of other practices to consider.
The topics I’ve chosen to present are based on my experience. These are the
issues that tend to come up when I consult teams. By omitting other topics,
I don’t mean to imply that they aren’t important.

Other practices you may find useful include canary releases and A/B testing
[49], fault tolerance and resiliency [73], dependency analysis, leadership,
distributed systems algorithms [55], architecture, finite state machines,
design patterns [39][33][66][46], Continuous Delivery [49], the SOLID
principles [60], and many other topics. Not only is the field vast; it keeps
growing.

I do, however, want to briefly discuss two other practices.

15.3.1 Property-Based Testing
Programmers new to automated testing often struggle coming up with test
values. One reason may be that sometimes certain values have to be
included in the test, even if they have no bearing on the test case. As an
example, consider listing 15.4, which verifies that the Reservation

constructor throws an ArgumentOutOfRangeException if the supplied
quantity isn’t a natural number.

This parametrised test uses the values 0 and -1 as examples of invalid
quantities. 0 is a boundary value [66], so should be included, but the exact
negative number is irrelevant. -42 would have been just as useful as -1.

Listing 15.4 A parametrised test that verifies that the Reservation
constructor throws an ArgumentOutOfRangeException on an invalid
quantity.
(Restaurant/812b148/Restaurant.RestApi.Tests/ReservationTests.cs)
Click here to view code image

[Theory]

[InlineData(0)]

[InlineData(-1)]

public void QuantityMustBePositive(int invalidQuantity)

{

 Assert.Throws<ArgumentOutOfRangeException>(

 () => new Reservation(

 Guid.NewGuid(),

 new DateTime(2024, 8, 19, 11, 30, 0),

 new Email ("vandal@example.com"),

 new Name("Ann da Lucia"),

 invalidQuantity));

}

Why should you have to bother coming up with numbers when any
negative number would do? What if there was a framework that could
produce arbitrary negative numbers?

There are several such reusable software packages. This is the foundational
idea behind property-based testing5. In the following, I’ll use a library
called FsCheck, but others exist6. FsCheck integrates with both xUnit.net
and NUnit so that you can easily integrate your property-based tests with
more ‘traditional’ tests. This also makes it easier to refactor existing tests to
property-based tests, as listing 15.5 implies.

5. The term property here means ‘trait’, ‘quality’, or ‘attribute’. Thus, property-based testing involves
testing a property of the System Under Test, for example that the Reservation constructor throws
an exception for all nonpositive quantities. In this context, property has nothing to do with C# or
Visual Basic properties (getter or setter methods).

6. The original property-based testing library is the Haskell QuickCheck package. It was first
released in 1999 and is still an active project. A plethora of ports exist, for many languages.

The [Property] attribute marks the method as a property-based test driven
by FsCheck. It looks like a parametrised test, but all method arguments are
now generated by FsCheck instead of being supplied by [InlineData]
attributes.

The values are randomly generated, usually skewed towards ‘typical’
boundary values like 0, 1, -1, and so on. By default, each property runs a
hundred times. Think of it as 100 [InlineData] attributes adorning a single
test, but each of the values randomly regenerated each time it executes.

Listing 15.5 The test from listing 15.4 refactored to a property-based test.
(Restaurant/05e64f5/Restaurant.RestApi.Tests/ReservationTests.cs)
Click here to view code image

[Property]

public void QuantityMustBePositive(NonNegativeInt i)

{

 var invalidQuantity = -i?.Item ?? 0;

 Assert.Throws<ArgumentOutOfRangeException>(

 () => new Reservation(

 Guid.NewGuid(),

 new DateTime (2024, 8, 19, 11, 30, 0),

 new Email("vandal@example.com"),

 new Name("Ann da Lucia"),

 invalidQuantity));

}

FsCheck comes with some built-in wrapper types, such as PositiveInt,
NonNegativeInt , and NegativeInt. These are just wrappers around
integers, but come with the guarantee that FsCheck will only generate
values that fit the description: only non-negative integers7 for
NonNegativeInt, and so on.

7. That is, numbers greater than or equal to zero.

For the QuantityMustBePositive test, we really need arbitrary non-
positive integers, but such a wrapper type doesn’t exist. One way to produce
values in the desired range, though, is to ask FsCheck to produce
NonNegativeInt values and then negate them.

The Item property8 returns the integer wrapped inside the NonNegativeInt
value. One of the static language analysers I’ve turned on points out that the
i parameter could be null. All those question marks is the C# way of
dealing with possible null references, terminating in the fallback value 0. I
mostly consider it noise. The important operation is the unary minus
operator in front of i. It inverts the non-negative integer to a non-positive
integer.

8. Here, a C# property; not a property-based testing property. Indeed, the overloaded terminology can
be confusing.

Once you realise that you can let a library like FsCheck produce arbitrary
test values, you may start to look at other test data in a new light. How
about that Guid.NewGuid() ? Couldn’t you let FsCheck produce that value
instead?

Indeed, as listing 15.6 shows, you can.

Listing 15.6 The property from listing 15.5 refactored to let FsCheck also
produce the reservation ID.
(Restaurant/87fefaa/Restaurant.RestApi.Tests/ReservationTests.cs)
Click here to view code image

[Property]

public void QuantityMustBePositive(Guid id, NonNegativeInt i)

{

 var invalidQuantity = -i?.Item ?? 0;

 Assert.Throws<ArgumentOutOfRangeException>(

 () => new Reservation(

 id,

 new DateTime(2024, 8, 19, 11, 30, 0),

 new Email("vandal@example.com"),

 new Name("Ann da Lucia"),

 invalidQuantity));

}

In fact, none of the hard-coded values have any impact on the outcome on
the test. Instead of "vandal@example.com", you could use any string for the
email. Instead of "Ann da Lucia", you could use any string for the name.
FsCheck will happily produce such values for you, as shown in listing 15.7.

Listing 15.7 The property from listing 15.6 refactored to let FsCheck
produce all parameters.
(Restaurant/af31e63/Restaurant.RestApi.Tests/ReservationTests.cs)
Click here to view code image

[Property]

public void QuantityMustBePositive(

 Guid id,

 DateTime at,

 Email email,

 Name name,

 NonNegativeInt i)

{

 var invalidQuantity = -i?.Item ?? 0;

 Assert.Throws<ArgumentOutOfRangeException>(

 () => new Reservation(id, at, email, name,

invalidQuantity));

}

You can take this concept surprisingly far. Sooner or later, you run into
special requirements for input data that you can’t just model with one of the
built-in wrapper types like NonNegativeInt. A good property-based testing
library like FsCheck has an API for such situations.

In fact, I often find that I have a harder time coming up with comprehensive
test cases than I have describing the general properties of a System Under
Test. This happened twice while I was developing the example restaurant
system.

For the complex logic supporting the maître d’s view of a day’s schedule, I
struggled to come up with specific test cases. When I realised the situation,
I switched to defining the behaviour with a sequence of more and more
specific properties9.Listing 15.8 shows the core of it.

9. You can see the progression of commits, as well as the final result, in the Git repository that
accompanies the book. I consider this code example too specific to warrant a step-by-step walk
through here, but I’ve described the example in details in a blog post [108].

Listing 15.8 Core implementation of an advanced property-based test. This
test method is configured and called by the code in listing 15.9.
(Restaurant/af31e63/Restaurant.RestApi.Tests/MaitreDScheduleTests.cs)
Click here to view code image

private static void ScheduleImp(

 MaitreD sut,

 Reservation[] reservations)

{

 var actual = sut.Schedule(reservations);

 Assert.Equal(

 reservations.Select(r => r.At).Distinct().Count(),

 actual.Count());

 Assert.Equal(

 actual.Select(ts => ts.At).OrderBy(d => d),

 actual.Select(ts => ts.At));

 Assert.All(actual, ts => AssertTables(sut.Tables,

ts.Tables));

 Assert.All(

 actual,

 ts => AssertRelevance(reservations,

sut.SeatingDuration, ts));

}

This is actually the ‘implementation’ of the test. It receives a MaitreD
argument andanarrayof reservations so that it can invoke the Schedule
method.

There’s another method that uses FsCheck’s API to properly configure the
sut and reservation arguments and call ScheduleImp. That’s the test

method that the unit testing framework actually runs. You can see it in
listing 15.9.

Listing 15.9 Configuration and execution of the core property shown in
listing 15.8.
(Restaurant/af31e63/Restaurant.RestApi.Tests/MaitreDScheduleTests.cs)
Click here to view code image

[Property]

public Property Schedule()

{

 return Prop.ForAll(

 (from rs in Gens.Reservations

 from m in Gens.MaitreD(rs)

 select (m, rs)).ToArbitrary(),

 t => ScheduleImp(t.m, t.rs));

}

This property uses advanced features of FsCheck, which are beyond the
scope of this book. If you’re not familiar with the FsCheck API, the details
will make little sense to you. That’s okay. I didn’t show the code to teach
you FsCheck. I included it to demonstrate that there’s a wider world of
software engineering than what’s covered in this book.

15.3.2 Behavioural Code Analysis
In this book, I’ve mostly taken a close look at code. You can, and should,
consider the impact and cost of each line of code. This doesn’t imply,
though, that a bigger picture is irrelevant. In subsection 7.2.6 about fractal
architecture, I also discussed the importance of the bigger picture.

That, still, is a static view of a code base. When you look at code, even
high-level code, you see it as it currently is. On the other hand, you have a
version control system. You can analyse it for additional insights. Which
files change most frequently? Which files tend to change together? Do
certain developers work only with certain files?

Analysis of version control data began as an academic discipline [44], but
with two books [111][112] Adam Tornhill has done much work to make this
practical. You could make behavioural code analysis part of your
Continuous Delivery pipeline.

Behavioural code analysis extracts information from Git to identify patterns
and problems that may only be visible over time. Even if a file may have
low cyclomatic complexity and modest size, it could be problematic for
other reasons. It could, for example, be coupled to other files that are more
complex.

Figure 15.3 Change coupling map. The files linked by a line are the
files that tend to change together. There are more files in the code base

being analysed, but only those that change together above a certain
threshold are included in the diagram.

Some coupling you can identify with dependency analysis, but other kinds
of coupling can be harder to find. This is particularly the case with copy-
and-paste code. By analysing which files, and which parts of the files, that
change together, you can uncover dependencies that might otherwise have
been invisible [112]. Figure 15.3 shows a change coupling map that
highlights which files most often change together.

You can dive into such a change coupling map to see an ‘X-ray’ of a single
file [112]. Which methods cause the most problems?

With the right tools, you can also produce maps of hotspots in your code, as
shown in figure 15.4. Such interactive enclosure diagrams present each file
as a circle. The size of each circle indicates its size or complexity, while the
colour indicates change frequency. The more commits that contain the file,
the more intense the colour [112].

Figure 15.4 Hotspot enclosure diagram. The larger the circle, the more
complex the file. The more intense the colour, the more frequently it

changes. I find it suggestive that these diagrams tend to look like
bacteria growths in a petri dish.

You can use behavioural code analysis as an active software engineering
tool. Not only can you produce compelling diagrams, you can also quantify
change coupling and hotspots in such a way that you can use the numbers
as thresholds for further investigation.

Keep the discussion in subsection 7.1.1 in mind. Numerical thresholds are
useful when they help direct your attention in a productive direction. Don’t
let thresholds become law.

You may want to keep an eye on trends as well. Trends are also actionable,
and if you aren’t starting with a greenfield code base, your numbers may
not look good, but at least, you can immediately start to improve a trend.

If you’re part of a larger team, you can also use behavioural code analysis
to identify knowledge distribution and team coupling. A variant of the
hotspot enclosure diagram is a knowledge map that shows the ‘main author’
of each file in different colours. This approaches a real quantification of a
team’s bus factor.

15.4 Conclusion
When you hear the term software engineering, you most likely think of
‘classic’ practices and disciplines such as performance and security
engineering, formal code reviews, complexity analysis, formal processes,
and so on.

Software engineering is all of those things, as well as the practices and
heuristics I’ve presented in this book. Other books [48][55] discuss these
more ‘traditional’ notions of software engineering, which is the reason I’ve
given them cursory treatment.

Clearly, performance is important, but it’s hardly the most important
attribute of software. That the software works correctly is more important

than whether it performs well. Once you’ve developed software that works
as it’s supposed to work, you may consider performance. Keep in mind,
however, that you have finite resources.

What is most important? That the software performs better, or that it’s
secure? Is it more important that the code base is in a state that can support
the organisation in years to come, or that it runs marginally faster?

As a programmer, you may have an opinion about this, but these are
questions that should involve other stakeholders.

16 Tour

I hope that if you follow the practices presented in this book, you’ll have a
better chance of producing code that fits in your head; code that will sustain
your organisation. What does such a code base look like?

In this last chapter, I’ll take you on a tour of the example code base that
accompanies the book. I’ll point out some highlights that I feel are
particularly compelling.

16.1 Navigation
You didn’t write the code, so how should you find your way in it? That
depends on your motivation for looking at it. If you’re a maintenance
programmer and you’ve been asked to fix a defect with an attached stack
trace, you may immediately go to the top frame in the trace.

On the other hand, if you have no immediate goal and you just want to get a
sense for the application, it’d be most natural to start at the program’s entry
point. In a .NET code base, that’s the Main method.

In general, I find it reasonable to assume that a code reader will be familiar
with the basic workings of the language, platform, and framework in use.

To be clear, I don’t assume that you, the reader of this book, is familiar with
.NET or ASP.NET, but when I program, I expect a team member to know
the ground rules. For example, I expect that a team member knows the
special significance of the Main method in .NET.

Listing 16.1 shows the Main method that meets you in the code base. It
hasn’t changed since listing 2.4.

Listing 16.1 Entry point for the restaurant reservation system. This listing is
identical to listing 2.4.
(Restaurant/af31e63/Restaurant.RestApi/Program.cs)
Click here to view code image

public static class Program

{

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[]

args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

}

In ASP.NET Core code bases, the Main method is a piece of boiler plate that
rarely changes. Since I expect other programmers who are going to work
with this code base to know the basics of the framework, I find it best to
keep code as unsurprising as possible. On the other hand, there’s little
informational content in listing 16.1.

Developers with a glancing knowledge of ASP.NET will know that the
webBuilder.UseStartup<Startup>() statement identifies the Startup
class as the place where the real action is. That’s where you should go look
to understand the code base.

16.1.1 Seeing the Big Picture
Use your IDE to navigate to the Startup class. Listing 16.2 show the class
declaration and constructor. It uses Constructor Injection [25] to receive an
IConfiguration object from the ASP.NET framework. This is the
conventional way to do things and should be familiar to anyone with

experience with the framework. While unsurprising, little information is so
far gained.

By convention, the Startup class should define two methods: Configure
and ConfigureServices . These follow immediately after listing
16.2.Listing 16.3 shows the Configure method.

Listing 16.2 Startup declaration and constructor. Listing 16.3 follows
immediately after. (Restaurant/af31e63/Restaurant.RestApi/Startup.cs)
Click here to view code image

public sealed class Startup

{

 public IConfiguration Configuration { get; }

 public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

Listing 16.3 Configure method on the Startup class declared in listing
16.2. (Restaurant/af31e63/Restaurant.RestApi/Startup.cs)
Click here to view code image

public static void Configure(

 IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 app.UseDeveloperExceptionPage();

app.UseAuthentication();

app.UseRouting();

app.UseAuthorization();

app.UseEndpoints(endpoints => { endpoints.MapControllers(); });

}

Here we learn that the system uses authentication, routing, authorisation,
and the framework’s default implementation of the Model View Controller

[33] (MVC) pattern. The abstraction level is high, but the code fits in your
head; the cyclomatic complexity is 2, there are only 3 activated objects, and
12 lines of code. Figure 16.1 shows one way to plot it to a hex flower
diagram. This illustrates how the code fits into the conceptual model of
fractal architecture.

Figure 16.1 Hex flower diagram of the Configure method in listing
16.3. There’s more than one way to fill out a hex flower. The examples
in chapter 7 fill each cell with a branch according to cyclomatic
complexity analysis. This one instead fills each cell with an activated
object.

This is essentially just a laundry list. All the methods invoked in listing 16.3
are framework methods. The Configure method’s sole purpose is to enable
those particular built-in features. Reading it, you know a little about what to
expect from the code. For example, you should expect each HTTP request
to be handled by a method on a Controller class.

Perhaps there’s more information to be gathered from the
ConfigureServices method in listing 16.4?

There’s a bit more information here, but it’s still at a high level of
abstraction. It also fits in your head: the cyclomatic complexity is 1, there
are 6 activated objects (services, urlSigningKey,a new
UrlIntegrityFilter object, two variables both called opts, and the
object’s Configuration property), and 21 lines of code. Again, you can plot
the method to a hex flower diagram like figure 16.2 to illustrate how the
method fits the concept of fractal architecture. As long as you can map each
chunk of a method into a cell in a hex flower diagram, the code is likely to
fit in your head.

Listing 16.4 ConfigureServices method on the Startup class declared in
listing 16.2. (Restaurant/af31e63/Restaurant.RestApi/Startup.cs)
Click here to view code image

public void ConfigureServices(IServiceCollection services)

{

 var urlSigningKey = Encoding.ASCII.GetBytes(

 Configuration.GetValue<string>("UrlSigningKey"));

 services

 .AddControllers(opts =>

 {

 opts.Filters.Add<LinksFilter>();

 opts.Filters.Add(new

UrlIntegrityFilter(urlSigningKey));

 })

 .AddJsonOptions(opts =>

 opts.JsonSerializerOptions.IgnoreNullValues =

true);

 ConfigureUrSigning(services, urlSigningKey);

 ConfigureAuthorization(services);

 ConfigureRepository(services);

 ConfigureRestaurants(services);

 ConfigureClock(services);

 ConfigurePostOffice(services);

}

Figure 16.2 Hex flower diagram of the ConfigureServices method in
listing 16.4. Like figure 16.1 this diagram fills each cell with an
activated object.

There are few details in the method; it works more like a table of contents
for the code base. Would you like to know about authorisation? Navigate to
the ConfigureAuthorization method to learn more. Would you like to
investigate the code base’s data access implementation? Navigate to the
ConfigureRepository method.

When you navigate to learn more, you zoom in on that detail. This is an
example of the fractal architecture discussed in subsection
7.2.6.Ateachlevel, the code fits in your head. When you zoom in on a detail,
the higher level shouldn’t be required to understand the code at the new
level.

Before we zoom in on a detail, I’d like to discuss how to navigate a code
base.

16.1.2 File Organisation

A question that I frequently get is how to organise the files in a code base.
Should you create a subdirectory for Controllers, another for Models, one
for Filters, and so on? Or should you create a subdirectory for each feature?

Few people like my answer: Just put all files in one directory. Be wary of
creating subdirectories just for the sake of ‘organising’ the code.

File systems are hierarchies; they are trees: a specialised kind of acyclic
graph in which any two vertices are connected by exactly one path. Put
another way, each vertex can have at most one parent. Even more bluntly: If
you put a file in a hypothetical Controllers directory, you can’t also put it
in a Calendar directory.

As an analysis of the Firefox code base notes:

“the system architects realized there were multiple ways in which the system could be sliced-and-
diced, indicating possible crosscutting concerns, and that choosing one separation into modules
would cause other cohesive parts of the system to be split up across multiple modules. In
particular, choosing to divide the browser and toolkit components of Firefox has caused the places
and themes components to become split.” [110]

This is the problem with hierarchies. Any attempt at organisation
automatically excludes all other ways to organise things. You have the same
problem with inheritance hierarchies in single-inheritance languages such
as C# and Java. If you decide to derive from one base class, you’ve
excluded all other classes as potential bases.

“Favor object composition over class inheritance.” [39]

Just as you should avoid inheritance, you should eschew the use of
directory structure to organise the code.

As with all advice, exceptions do exist. Consider the sample code base. The
Restaurant.RestApi directory contains 65 code files: Controllers, Data
Transfer Objects, Domain Models, filters, SQL scripts, interfaces, Adapters,
et cetera. These files implement various features such as reservations and
the calendar, as well as cross-cutting concerns such as logging.

The only exception to the rule is a subdirectory called Options. Its four files
exist only to bridge the gap from JSON-based configuration files to code.

The classes in these files are specialised to adapt to the ASP.NET options
system. They’re Data Transfer Objects and exist only for that singular
purpose. I feel quite confident that they shouldn’t be used for any other
purpose, so I decided to put them out of sight.

When I tell people that organising code files in elaborate hierarchies is a
bad idea, they incredulously counter: How will we find files?

Use your IDE. It has navigation features. When, earlier, I wrote that you
should use your IDE to navigate to the Startup class, I didn’t mean ‘locate
the Startup.cs file in the Restaurant.RestApi directory and open it.’

I meant, use your IDE to go to the definition of a symbol. In Visual Studio,
for example, this command is called Go To Definition and by default bound
to F12. Other commands enable you to go to implementations of interfaces,
find all references, or search for a symbol.

Your editor has tabs, and you can switch between them using standard
keyboard shortcuts1.

1. On Windows, that would be Ctrl + Tab.

I’ve mob-programmed with developers to teach them test-driven
development. We’d be looking at a test, and I’d say something like “Okay,
could we switch to the System Under Test, please?”

The driver would then think about the name of that class, go to the file
view, scroll through it to find the file, and double-click to open it.

All the while, the file was open in another tab. We worked with it three
minutes ago, and it was just a keyboard shortcut away.

As an exercise, hide your IDE’s file view. Learn to navigate code bases
using the rich code integration offered by the IDE.

16.1.3 Finding Details

A method like listing 16.4 gives you the big picture, but sometimes you
need to see implementation details. If, for example, you want to learn how
data access works, you should navigate to the ConfigureRepository
method in listing 16.5.

Listing 16.5 ConfigureRepository method. Here you can learn how the
data access components are composed.
(Restaurant/af31e63/Restaurant.RestApi/Startup.cs)
Click here to view code image

private void ConfigureRepository(IServiceCollection services)

{

 var connStr =

Configuration.GetConnectionString("Restaurant");

 services.AddSingleton<IReservationsRepository>(sp =>

 {

 var logger =

sp.GetService<ILogger<LoggingReservationsRepository>>();

 var postOffice = sp.GetService<IPostOffice>();

 return new EmailingReservationsRepository(

 postOffice,

 new LoggingReservationsRepository(

 logger,

 new SqlReservationsRepository(connStr)));

 });

}

From the ConfigureRepository method you can learn that it registers an
IReservationsRepository instance with the built-in Dependency

Injection Container. Again, the code fits in your head: the cyclomatic
complexity is 1, it activates 6 objects, and there are 15 lines of code. Figure
16.3 shows a possible hex flower mapping.

Figure 16.3 Hex flower diagram of the ConfigureRepository method
in listing 16.5. Like figure 16.1 this diagram fills each cell with an
activated object.

Since you’ve zoomed in on a detail, the surrounding context shouldn’t
matter. What you need to keep track of in your head is the services
parameter, the Configuration property, and the variables that the method
creates.

You can learn a few things from this code:

If you want to edit the application’s connection string you should use the
standard ASP.NET configuration system.

The IReservationsRepository service is actually a three-levels-deep
Decorator that also involves logging and emailing.

The innermost implementation is the SqlReservationsRepository class.

Depending on what interests you, you can navigate to the relevant type. If
you want to know more about the IPostOffice interface, you can Go To
Definition or Go To Implementation. If you want to look at

SqlReservationsRepository , navigate to it. When you do that, you zoom
in on an even deeper level of detail.

You can find code listings from SqlReservationsRepository throughout
the book, for example listings 4.19, 12.2,and 15.1. They all fit in your brain
as already discussed.

All the code in the code base follows these principles.

16.2 Architecture
I’ve had little to say about architecture. It’s not that I consider it
unimportant, but again, good books already exist on the topic. Most of the
practices I’ve presented work with a variety of architectures: layered [33];
monolithic; ports and adapters [19]; vertical slices; the actor model; micro-
services; functional core, imperative shell [11]; et cetera.

Clearly, software architecture impacts how you organise code, so it’s hardly
irrelevant. You should explicitly consider the architecture for each code
base you work in. There’s no one-size-fits-all architecture, so you shouldn’t
consider any of the following as gospel. It’s a description of a single
architecture that works well for the task at hand. It’s not suitable for all
situations.

16.2.1 Monolith
If you’ve looked at the book’s sample code base, you may have noticed that
it looks disconcertingly monolithic. If you consider the full code base that
includes the integration tests, as figure 16.4 illustrates, there are all of three
packages2. Of those, only one is production code.

2. In Visual Studio these are called projects.

The entire production code compiles to a single executable file. That
includes the database access, HTTP specifics, Domain Model, logging,

email functionality, authentication, and authorisation. All in one package?
Isn’t that a monolith?

In a sense, you could argue that it is. From a deployment perspective, for
example, you can’t separate the various parts to put them on different
machines. For the purposes of this sample application, I decided that this
wasn’t a ‘business’ goal.

Figure 16.4 The packages that make up the sample code base. With
only a single production package, it reeks of a monolith.

You also can’t reuse parts of the code in new ways. What if we wanted to
reuse the Domain Model to run a scheduled batch job? If you tried to do
that, you would find that the HTTP-specific code would tag along, as would
the email functionality.

That, however, is only an artefact of how I chose to package the code. One
package is simpler than, say, four.

Internally in that single package, I’ve applied the functional core,
imperative shell [11] architecture, which tends to lead towards a ports-and-
adapters-style architecture [102].

I’m not that worried whether it’d be possible to separate that code base into
multiple packages, should it become necessary.

16.2.2 Cycles
Monoliths tend to have a bad reputation because they so easily devolve into
spaghetti code. A major reason is that inside a single package, all code can
easily3 call all other code.

3. To be fair, in a language like C#, you can use the private access modifier to prevent other classes
from calling a method. That’s not much of a barrier to a developer in a hurry: Just change the
access modifier to internal and move on.

This often leads to one piece of code that depends on another part, that
again depends on the first. An example I often see is illustrated by figure
16.5:data access interfaces that return or take as parameters objects defined
by an object-relational mapper. The interface may be defined as part of the
code base’s Domain Model, so the implementation is coupled to that. So
far, so good, but the interface is defined in terms of the object-relational
mapper classes, so the abstraction also depends on implementation details.
This violates the Dependency Inversion Principle [60] and leads to
coupling.

Figure 16.5 A typical data access cycle. The Domain Model defines a
data access interface, here called IRepository. Members are defined
with return types or parameters taken from the data access layer. For
example, the Row class could be defined by an object-relational mapper
(ORM). Thus, the Domain Model depends on the data access layer. On
the other hand, the OrmRepository class is an ORM-based
implementation of the IRepository interface. It can’t implement the
interface without referencing it, so the data access layer also depends on
the Domain Model. In other words, the dependencies form a cycle.

In such cases, coupling manifests as cycles. As illustrated by figure 16.6, A
depends on B, which depends on C, which again depends on A. No
mainstream languages prevent cycles, so you have to be eternally vigilant to
avoid them.

Figure 16.6 A simple cycle. A depends on B, which depends on C,
which again depends on A.

There is, however, a hack that you can use. While mainstream languages
allow cycles in code, they do prohibit them in package dependencies. If, for
example, you try to define a data access interface in a Domain Model
package and you want to use some object-relational mapper classes for
parameters or return values, you’ll have to add a dependency to your data
access package.

Figure 16.7 A cycle foiled. If the Domain Model package already
references the data access package, the data access package can’t
reference the Domain Model package. You can’t create a dependency
cycle between packages.

Figure 16.7 illustrates what happens next. Once you want to implement the
interface in the data access package, you’ll need to add a dependency to the
Domain Model package. Your IDE, however, refuses to break the Acyclic
Dependency Principle [60], so you can’t do that.

This should be motivation to break a code base into multiple packages. You
get your IDE to enforce an architectural principle, even if it’s only at a
coarse-grained level. It’s poka-yoke applied to architecture. It passively
prevents large-scale cycles.

The familiar way to separate a system into smaller components is to
distribute the behaviour over Domain Model, data access, ports or user
interface, and a Composition Root [25] package to compose the other three
together.

Figure 16.8 Hypothetical decomposition of the example restaurant
reservation code base. The HTTP model would contain all the logic and
configuration related to HTTP and REST, the Domain Model the
‘business logic’, and the data access package the code that talks to the
database. The app host package would contain the Composition Root
[25] that composes the three other packages. Three test packages would
target the three production packages that contain complex logic.

As figure 16.8 implies, you may also want to unit test each package
separately. Now, instead of three packages, you have seven.

The passive prevention of cycles is worth the extra complexity. Unless team
members have extensive experience with a language that prevents cycles, I
recommend this style of architecture.

Such languages do exist, though. F# famously prevents cycles. In it, you
can’t use a piece of code unless it’s already defined above. Newcomers to
the language see this as a terrible flaw, but it’s actually one of its best
features [117][37].

Haskell takes a different approach, but ultimately, its explicit treatment of
side effects at the type level steers you towards a ports-and-adapters-style
architecture. Your code simply doesn’t compile otherwise [102]!

I’ve been writing F# and Haskell for enough years that I naturally follow
the beneficial rules that they enforce. I’m confident that the sample code is
nicely decoupled, even though it’s packaged as a monolith. But unless you
have a similar experience, I recommend that you separate your code base
into multiple packages.

16.3 Usage
If you’re looking at an unfamiliar code base, you’d like to see it in action. A
REST API doesn’t have a user interface, so you can’t just launch it and start
clicking on buttons.

Or, to a certain degree, you can. If you run the application, you can view its
‘home’ resource in a browser. The JSON representations served by the API
contain links that you can follow in your browser. It’s a limited way to
interact with the system, though.

Using your browser, you can only issue GET requests. To make a new
reservation, however, you’ll have to make a POST request.

16.3.1 Learning from Tests
When a code base has a comprehensive test suite, you can often learn about
intended usage from the tests. For example, you might want to learn how to
make a new reservation in the system.

Listing 16.6 shows a test I wrote as I was expanding the code base to a
multi-tenant system. It’s representative of the way these tests are written.

As usual, this is code that fits in your head: it has a cyclomatic complexity
of 1, 6 activated objects, and 14 lines of code. The abstraction level is high,
in the sense that it doesn’t tell you the details of how it makes assertions, or
how PostReservation is implemented.

Listing 16.6 Unit test that makes a reservation at the restaurant Nono.
(Restaurant/af31e63/Restaurant.RestApi.Tests/ReservationsTests.cs)
Click here to view code image

[Fact]

public async Task ReserveTableAtNono()

{

 using var api = new SelfHostedApi();

 var client = api.CreateClient();

 var dto = Some.Reservation.ToDto();

 dto.Quantity = 6;

 var response = await client.PostReservation("Nono", dto);

 var at = Some.Reservation.At;

 await AssertRemainingCapacity(client, at, "Nono", 4);

 await AssertRemainingCapacity(client, at, "Hipgnosta", 10);

}

If you’re curious about that, you may decide to navigate to the
PostReservation implementation to see listing 16.7.

Listing 16.7 Test Utility Method [66] that makes a reservation.
(Restaurant/af31e63/Restaurant.RestApi.Tests/RestaurantApiClient.cs)

Click here to view code image

internal static async Task<HttpResponseMessage>

PostReservation(

 this HttpClient client,

 string name,

 object reservation)

{

 string json = JsonSerializer.Serialize(reservation);

 using var content = new StringContent(json);

 content.Headers.ContentType.MediaType = "application/json";

 var resp = await client.GetRestaurant(name);

 resp.EnsureSuccessStatusCode();

 var rest = await resp.ParseJsonContent<RestaurantDto>();

 var address = rest.Links.FindAddress("urn:reservations");

 return await client.PostAsync(address, content);

}

This Test Utility Method [66] usesan HttpClient to interact with the REST
API. You may recall from listing 16.6 that the client in question
communicates with a self-hosted instance of the service. When you zoom in
on the PostReservation method, however, you no longer need to keep
track of that. The only thing you need to know is that you have a working
client.

This is another example of how the fractal architecture works. When you
zoom in on a detail, the surrounding context becomes irrelevant. You don’t
have to keep it in your head.

Specifically, you can see that the helper method serialises the reservation
to JSON. It then finds the appropriate address to use for making the POST
request.

That’s more detailed than before. Perhaps that taught you what you wanted
to know. If you were curious about how to format the POST request, which
HTTP headers to use, et cetera, then you need look no further. If, on the
other hand, you’d like to know how to navigate to a particular restaurant,
you’d have to zoom in on the GetRestaurant method. Or if you want to

learn how to find a particular address in a JSON representation, you could
zoom in on FindAddress .

Well-written tests can be a great learning resource.

16.3.2 Listen to Your Tests
If the book Growing Object-Oriented Software, Guided by Tests [36] hada
motto, it’d be listen to your tests. Good tests can teach you more than how
to interact with the System Under Test.

Keep in mind that test code is code too. You’ll have to maintain it just like
you must maintain the production code. You should refactor test code when
it starts to rot, just like production code.

You may introduce Test Utility Methods [66] like listings 16.7 or 16.8. It
turns out that the GetRestaurant method in listing 16.8 serves as a general-
purpose entry point for any HttpClient that wants to interact with this
particular REST API. Since it’s a multi-tenant system, the first step for any
client is to navigate to the desired restaurant.

If you look closer at listings 16.7 or 16.8, there’s nothing test-specific about
them. Might they be useful in other contexts?

Listing 16.8 Test Utility Method [66] that finds a restaurant resource based
on its name.
(Restaurant/af31e63/Restaurant.RestApi.Tests/RestaurantApiClient.cs)
Click here to view code image

internal static async Task<HttpResponseMessage> GetRestaurant(

 this HttpClient client,

 string name)

{

 var homeResponse =

 await client.GetAsync(new Uri("", UriKind.Relative));

 homeResponse.EnsureSuccessStatusCode();

 var homeRepresentation =

 await homeResponse.ParseJsonContent<HomeDto>();

 var restaurant =

 homeRepresentation.Restaurants.First(r => r.Name ==

name);

 var address =

restaurant.Links.FindAddress("urn:restaurant");

 return await client.GetAsync(address);

}

The benefit of a REST API is that it supports any client that ‘speaks’ HTTP
and can parse JSON4. Still, if the only thing you do is to publish the API, all
third-party programmers will have to develop their own client code. If a
substantial segment of your clients are on the same platform as your test
code, you could promote those Test Utility Methods to an ‘official’ client
SDK.

4. Or XML, if you’re in that mood.

Situations like that regularly happen to me. As I refactor test code, I realise
that some of it would also be useful as production code. That’s always a
happy discovery. When that happens, move the code over. Profit.

16.4 Conclusion
‘Real’ engineering is a mix of deterministic processes and human judgment.
If you need to build a bridge, you have formulas to calculate load-bearing
strength, but you still need to involve people to deal with the myriad
complexities related to the task. What sort of traffic should the bridge
support? What is the desired throughput? What are the temperature
extremes? What is the underground like? Are there environmental
concerns?

If engineering was an entirely deterministic process, you wouldn’t need
people. All it would require would be computers and industrial robots.

It’s possible that some engineering disciplines may move into that realm in
the future, but if that happens, it stops being engineering; it becomes

manufacturing.

You might consider this distinction merely ontological, but I believe that it
pertains to the art of software engineering. There are quantitative
methodologies that you can adopt. That doesn’t discharge you from an
obligation to use your brain.

The task is to combine skill with appropriate processes, heuristics, and
technologies to make development more likely to succeed. In this book,
I’ve presented multiple techniques you can adopt today. An early reader
considered some of these ideas advanced. That may be so, but they are
possible.

“The future is already here—it’s just not very evenly distributed” – William Gibson

Likewise, the techniques presented here are no pie in the sky. Some
organisations already use them. You could, too.

A List of Practices

This appendix contains a list of various methods and heuristics that are
described throughout the book, including where to find them.

A.1 The 50/72 Rule
Write conventional Git commit messages.

Write a summary in the imperative, no wider than 50 characters.

If you add more text, leave the next line blank.

You can add as much extra text as you’d like, but format it no wider than
72 characters.

Apart from the summary, focus on explaining why a change was made,
since what constitutes the change is already visible via Git’s diff view. See
subsection 9.1.1.

A.2 The 80/24 Rule
Write small blocks of code.

In C-based languages like C#, Java, C++, or JavaScript, consider staying
within a 80 × 24 character box. That corresponds to an old terminal
window.

Don’t take the threshold values 80 and 24 too literally. I picked them for
three reasons:

They work well in practice

Continuity with tradition

Mnemonically, it sounds like the Pareto principle, also known as the 80/20
rule

You can decide on other threshold values. I think the most important part of
this rule is to pick a set of thresholds and consistently stay within those
limits.

Read more in subsection 7.1.3.

A.3 Arrange Act Assert
Structure automated tests according to the Arrange Act Assert pattern.
Make it clear to readers where one section ends and the next begins. See
subsection 4.2.2 for the main idea, and 4.3.3 for additional details.

A.4 Bisection
When you’re struggling to understand the cause of a problem, bisection can
be a useful technique. Remove half of your code and check if the problem is
still present. Either way, you know in which half you can find the cause.

Keep halving the code until you’ve reduced it so much that you have a
minimal working example. At that point, you may have removed so much
irrelevant context to reproduce the problem that it’s clear what the problem
is. Read more in section 12.3.

A.5 Checklist for A New Code Base
When you create a new code base, or add a new ‘project’ to an existing
code base, consider following a checklist. Here’s a suggestion:

Use Git

Automate the build

Turn on all error messages

You can modify this checklist to suit your particular context, but keep it
short and simple. Read more in section 2.2.

A.6 Command Query Separation
Separate Commands from Queries. Commands are procedures that have
side effects. Queries are functions that return data. Every method should be
either a Command or a Query, but not both. See more in subsection 8.1.6.

A.7 Count the Variables
Count all the variables involved in a method implementation. Include both
local variables, method parameters, and class fields. Make sure to keep the
number low. See subsection 7.2.7.

A.8 Cyclomatic Complexity
Cyclomatic complexity is one of few actually useful code metrics. It
measures the number of pathways through a piece of code, thereby giving
you an indication about the complexity of a method.

I find that instituting a threshold of seven works well in practice. You can
accomplish useful work with a cyclomatic complexity of seven, so the
threshold is big enough that you don’t have to refactor all the time. On the
other hand, it’s still low enough that you can easily fit such a method in
your brain. Read more in subsection 7.1.2.

The metric also gives you the minimum number of test cases you have to
write to fully cover a method.

A.9 Decorators for Cross-Cutting Concerns
Don’t inject logging dependencies into your business logic. That’s not
separation of concerns; that’s jumbling them together. The same goes for
caching, fault tolerance, and most other cross-cutting concerns.

Instead, use the Decorator design pattern, as described in section 13.2.

A.10 Devil’s Advocate
The Devil’s Advocate technique is a heuristic you can use to evaluate
whether more test cases would improve confidence in the test suite. You can
use it to review existing (test) code, but you can also use it as inspiration for
new test cases that you should consider adding.

The technique is to deliberately implement the System Under Test
incorrectly. The more incorrect you can make it, the more test cases you
should consider adding. Read more in subsection 6.2.2.

A.11 Feature Flag
If you can’t complete a coherent set of changes in half a day’s work, hide
the feature behind a feature flag, and continue to integrate your changes
with other peoples’ work.

Read more in section 10.1.

A.12 Functional Core, Imperative Shell
Favour pure functions.

Referential transparency means that you can replace a function call with its
result, with no change of program behaviour. This is the ultimate

abstraction. The output encapsulates the essence of the function, while all
implementation details remain hidden (unless you need them).

Pure functions also compose well, and they’re easy to unit test.

See subsection 13.1.3 for more details.

A.13 Hierarchy of Communication
Write code for future readers; it may be yourself. Favour communicating
behaviour and intent according to this prioritised list:

1. Guide the reader by giving APIs distinct types.

2. Guide the reader by giving methods helpful names.

3. Guide the reader by writing good comments.

4. Guide the reader by providing illustrative examples as automated tests.

5. Guide the reader by writing helpful commit messages in Git.

6. Guide the reader by writing good documentation.

The items on the top of the list are more important than the items at the
bottom. See subsection 8.1.7.

A.14 Justify Exceptions from the Rule
Good rules work well most of the time, but there are always occasions
where a rule is in the way. It’s okay to deviate from a rule when
circumstances require it, but justify and document the reason. See
subsection 4.2.3 for a discussion.

It’s a good idea to get a second opinion before you decide to deviate from a
rule. Sometimes, you may not be able to see a good way to get what you

want and follow the rule, but a co-worker can.

A.15 Parse, Don’t Validate
Your code interacts with the rest of the world, and the rest of the world isn’t
object-oriented. Instead, you receive data as JSON, XML, comma-separated
values, protocol buffers, or in other formats that carry few guarantees as to
the integrity of the data.

Convert less-structured data to more-structured data as soon as possible.
You can think of this as parsing, even if you don’t parse plain text. Read
more in subsection 7.2.5.

A.16 Postel’s Law
Keep Postel’s law in mind for pre- and postconditions.

Be conservative in what you send, be liberal in what you accept.

Methods should accept input as long as they can make sense of it, but no
further. Return values should be as trustworthy as possible. Read more in
subsection 5.2.4.

A.17 Red Green Refactor
When engaging in test-driven development, follow the Red Green Refactor
process. You can think of it as a checklist [93]:

1. Write a failing test.

Did you run the test?

Did it fail?

Did it fail because of an assertion?

Did it fail because of the last assertion?

2. Make all tests pass by doing the simplest thing that could possibly work.

3. Consider the resulting code. Can it be improved? If so, do it, but make sure
that all tests still pass.

4. Repeat.

Read more in subsection 5.2.2.

A.18 Regularly Update Dependencies
Don’t let your code base fall behind its dependencies. Check for updates at
a regular schedule. It’s easy to forget, but if you fall too far behind, it could
be difficult to catch up. See subsection 14.2.1.

A.19 Reproduce Defects as Tests
If at all possible, reproduce bugs as one or more automated tests. See
subsection 12.2.1.

A.20 Review Code
It’s easy to make mistakes when you write code. Have another person
perform a code review. It doesn’t capture all mistakes, but it’s one of the
most effective quality assurance techniques we know of.

You can perform code reviews in many ways: continually, when pair or
mob programming, or asynchronously as pull request reviews.

Reviews should be constructive, but rejection should be a real option. If you
can’t reject a change, then a review is worth little.

Make code reviews part of your daily rhythm. See section 9.2.

A.21 Semantic Versioning
Consider using Semantic Versioning. Read more in section 10.3.

A.22 Separate Refactoring of Test and Production
Code
Automated tests give you confidence when you need to refactor your
production code. Refactoring test code, on the other hand, is more
dangerous because you have no automated tests of the tests.

This doesn’t mean that you can’t refactor your test code at all, but you
should be careful when you do. Particularly, don’t refactor both test and
production code at the same time.

When you refactor production code, leave the test code alone. When you
refactor test code, leave the production code alone. Read more in subsection
11.1.3.

A.23 Slice
Work in small increments. Each increment should improve a running,
working system. Start with a vertical slice, and add functionality to it. Read
more in chapter 4.

Don’t consider this process exclusive. I find that it works as my main
process for moving forward, but sometimes, you need to stop and do other
things. Fixing bugs, for example, or working on cross-cutting concerns.

A.24 Strangler

Some refactorings are quickly done. Renaming a variable, method, or class
is built into most IDEs and is just a button click away. Other changes
require a few minutes, or perhaps hours. As long as you can go from one
consistent state of the code base to another consistent state in less than half
a day, you may not need to do anything special.

Other changes have a greater potential impact. I’ve done refactorings that
took days, even more than a week, to implement. That’s not a good way to
work.

When you detect that this may be the case, use the Strangler process to
implement the changes. Establish the new way of doing things side-by-side
with the old way, and gradually migrate code from the old to the new way.

This can take hours, days, or even weeks, but during the migration process,
the system is always consistent and integrable. When no code calls the
original API, you can delete it.

Read more in section 10.2.

A.25 Threat-Model
Take deliberate security decisions.

For people who aren’t security experts, the STRIDE model is easy enough
to get your head around that you can do a decent job of it.

Spoofing

Tampering

Repudiation

Information disclosure

Denial of service

Elevation of privilege

Threat modelling should involve IT professionals and other stakeholders,
since proper mitigation typically involves weighing business concerns
against security risks.

Read more in subsection 15.2.1.

A.26 Transformation Priority Premise
Try to work in a way so that your code is in a valid state most of the time.
Transforming one valid state into another valid state typically involves a
phase where the code is invalid, for example where it may not compile.

The Transformation Priority Premise suggests a series of small
transformations that minimises the invalid phases. Try to edit your code by
moving through a series of these small changes. Read more in subsection
5.1.1.

A.27 X-driven Development
Use a driver for the code that you write. It could be static code analysis, a
unit test, built-in refactoring tools, et cetera. See section 4.2 for more
details.

It’s okay to deviate from this rule, but the closer you adhere to it, the less
you tend to go astray.

A.28 X Out Names
Replace method names with Xs to examine how much information a
method’s signature communicates. You can do it in your head; you don’t
actually have to do it in your editor. The point is that in a statically typed
language, types can carry much information, if you let them. Read more in
subsection 8.1.5.

Bibliography

[1] Adzic, Gojko, The Poka-Yoke principle and how to write better
software,blog post at https://gojko.net/2007/05/09/the-poka-yoke-
principle-and-how-to-write-better-software, 2007.

[2] Allamaraju, Subbu, RESTful Web Services Cookbook, O’Reilly,
published 2010.

[3] Atwood, Jeff, New Programming Jargon, blog post at
https://blog.codinghorror.com/new-programming-jargon, 2012.

[4] Barr, Adam, The Problem with Software. Why Smart Engineers Write
Bad Code, MIT Press, 2018.

[5] Beck, Kent, and Cynthia Andres, Extreme Programming Explained:
Embrace Change, Addison-Wesley, published 2004.

[6] Beck, Kent, tweet at
https://twitter.com/KentBeck/status/250733358307500032, 2012.

[7] Beck, Kent, Implementation Patterns, Addison-Wesley, published
2007.

[8] Beck, Kent, Naming From the Outside In, Facebook note at
https://www.facebook.com/notes/kent-beck/naming-from-the-outside-
in/464270190272517 (accessible without a Facebook account), 2012.

[9] Beck, Kent, Test-Driven Development By Example, Addison-Wesley,
published 2002.

[10] Beck, Kent, tweet at
https://twitter.com/KentBeck/status/1354418068869398538, 2021.

[11] Bernhardt, Gary, Functional Core, Imperative Shell, online
presentation at

https://gojko.net/2007/05/09/the-poka-yoke-principle-and-how-to-write-better-software
https://blog.codinghorror.com/new-programming-jargon
https://twitter.com/KentBeck/status/250733358307500032
https://www.facebook.com/notes/kent-beck/naming-from-the-outside-in/464270190272517
https://twitter.com/KentBeck/status/1354418068869398538

https://www.destroyallsoftware.com/screencasts/catalog/functional-
core-imperative-shell, 2012.

[12] Böckeler, Birgitta, and Nina Siessegger, On Pair Programming, blog
post at https://martinfowler.com/articles/on-pair-programming.xhtml,
2020.

[13] Bossavit, Laurent, The Leprechauns of Software Engineering, Laurent
Bossavit, 2015.

[14] Brooks, Frederick P., Jr., No Silver Bullet – Essence and Accident in
Software Engineering, 1986. This essay can be found in various
sources, and is easily located on the internet. In writing this book, I
referred to my copy of The Mythical Man-Month: Essays on Software
Engineering. Anniversary Edition, Addison-Wesley, published 1995,
in which the essay constitutes chapter 16.

[15] Brown, William J., Raphael C. Malveau, Hays W. “Skip” McCormick
III, and Thomas J. Mowbray, AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis, Wiley Computer Publishing,
1998.

[16] Cain, Susan, Quiet: The Power of Introverts in a World That Can’t
Stop Talking, Crown, 2012.

[17] Campidoglio, Enrico, tweet at
https://twitter.com/ecampidoglio/status/1194597766128963584, 2019.

[18] Cirillo, Francesco, The Pomodoro Technique: The Life-Changing
Time-Management System, Virgin Books, 2018.

[19] Cockburn, Alistair, Hexagonal architecture, online article at
https://alistair.cockburn.us/hexagonal-architecture/, 2005.

[20] Cohen, Jason, Modern Code Review in [75], 2010.

[21] Conway, Melvin E., How Do Committees Invent?, Datamation, 1968.
I admit that I don’t own a copy of the April 1968 issue of Datamation
magazine. Instead, I’ve used the online reprint that Melvin Conway
hosts at http://www.melconway.com/Home/Committees_Paper.xhtml.

https://www.destroyallsoftware.com/screencasts/catalog/functional-core-imperative-shell
https://martinfowler.com/articles/on-pair-programming.xhtml
https://twitter.com/ecampidoglio/status/1194597766128963584
https://alistair.cockburn.us/hexagonal-architecture/
http://www.melconway.com/Home/Committees_Paper.xhtml

[22] Cunningham, Ward, and Bill Venners, The Simplest Thing that Could
Possibly Work. A Conversation with Ward Cunningham, Part V,
interview at www.artima.com/intv/simplest.xhtml, 2004.

[23] Cwalina, Krzysztof, and Brad Abrams, Framework Design
Guidelines, Conventions, Idioms, and Patterns for Reusable .NET
Libraries, Addison-Wesley, published 2005.

[24] DeLine, Robert, Code Talkers in [75], 2010.

[25] Deursen, Steven van, and Mark Seemann, Dependency Injection
Principles, Practices, and Patterns, Manning, 2019.

[26] Evans, Eric, Domain-Driven Design: Tackling Complexity in the
Heart of Software, Addison-Wesley, published 2003.

[27] Feathers, Michael C., Working Effectively with Legacy Code, Prentice
Hall, published 2004.

[28] Foote, Brian, and Joseph Yoder, The Selfish Class in [62], 1998.

[29] Forsgren, Nicole, Jez Humble, and Gen Kim, Accelerate, IT
Revolution Press, 2018.

[30] Fowler, Martin, CodeOwnership, blog post at
https://martinfowler.com/bliki/CodeOwnership.xhtml, 2006.

[31] Fowler, Martin, Eradicating Non-Determinism in Tests, blog post at
https://martinfowler.com/articles/nonDeterminism.xhtml, 2011.

[32] Fowler, Martin, Is High Quality Software Worth the Cost?, blog post
at https://martinfowler.com/articles/is-quality-worth-cost.xhtml, 2019.

[33] Fowler, Martin, David Rice, Matthew Foemmel, Edward Hieatt,
Robert Mee, and Randy Stafford, Patterns of Enterprise Application
Architecture, Addison-Wesley, 2003.

[34] Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don
Roberts, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

http://www.artima.com/intv/simplest.xhtml
https://martinfowler.com/bliki/CodeOwnership.xhtml
https://martinfowler.com/articles/nonDeterminism.xhtml
https://martinfowler.com/articles/is-quality-worth-cost.xhtml

[35] Fowler, Martin, StranglerFigApplication, blog post at
https://martinfowler.com/bliki/StranglerFigApplication.xhtml, 2004.

[36] Freeman, Steve, and Nat Pryce, Growing Object-Oriented Software,
Guided by Tests, Addison-Wesley, published 2009.

[37] Gabasova, Evelina, Comparing F# and C# with dependency
networks,blog post at http://evelinag.com/blog/2014/06-09-
comparing-dependency-networks, 2014.

[38] Gabriel, Richard P., Patterns of Software. Tales from the Software
Community, Oxford University Press, 1996.

[39] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, published 1994.

[40] Gawande, Atul, The Checklist Manifesto: How to Get Things Right,
Metropolitan Books, 2009.

[41] Haack, Phil, I Knew How To Validate An Email Address Until I Read
The RFC, blog post at https://haacked.com/archive/2007/08/21/i-
knew-how-to-validate-an-email-address-until-i.aspx, 2007.

[42] Henney, Kevlin, tweet at
https://twitter.com/KevlinHenney/status/3361631527, 2009.

[43] Herraiz, Israel, and Ahmed E. Hassan, Beyond Lines of Code: Do We
Need More Complexity Metrics? in [75], 2010.

[44] Herzig, Kim Sebastian, and Andreas Zeller, Mining Your Own
Evidence in [75], 2010.

[45] Hickey, Rich, Simple Made Easy, Strange Loop conference talk,
2011. A recording is available at
https://www.infoq.com/presentations/Simple-Made-Easy.

[46] Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions, Addison-
Wesley, published 2003.

https://martinfowler.com/bliki/StranglerFigApplication.xhtml
http://evelinag.com/blog/2014/06-09-comparing-dependency-networks
https://haacked.com/archive/2007/08/21/i-knew-how-to-validate-an-email-address-until-i.aspx
https://twitter.com/KevlinHenney/status/3361631527
https://www.infoq.com/presentations/Simple-Made-Easy

[47] House, Cory, tweet at
https://twitter.com/housecor/status/1115959687332159490, 2019.

[48] Howard, Michael, and David LeBlanc, Writing Secure Code, Second
Edition, Microsoft Press, 2003.

[49] Humble, Jez, and David Farley, Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment Automation,
Addison-Wesley, published 2010.

[50] Hunt, Andy, and Dave Thomas, The Pragmatic Programmer: From
Journeyman to Master, Addison-Wesley, 1999.

[51] Kahneman, Daniel, Thinking, fast and slow, Farrar, Straus and
Giroux, 2011.

[52] Kay, Alan, and Andrew Binstock, Interview with Alan
Kay,Dr.Dobb’s, www.drdobbs.com/architecture-and-
design/interview-with-alan-kay/240003442, July 10, 2012.

[53] Kerievsky, Joshua, Refactoring to Patterns, Addison-Wesley,
published 2004.

[54] King, Alexis, Parse, don’t validate, blog post at https://lexi-
lambda.github.io/blog/2019/11/05/parse-don-t-validate, 2019.

[55] Kleppmann, Martin, Designing Data-Intensive Applications: The Big
Ideas Behind Reliable, Scalable, and Maintainable Systems, O’Reilly,
2017.

[56] Lanza, Michele, and Radu Marinescu, Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate, and
Improve the Design of Object-Oriented Systems, Springer, 2006.

[57] Levitt, Steven D., and Stephen J. Dubner, Freakonomics—A Rogue
Economist Explores The Hidden Side Of Everything, William Morrow
& Company, Revised and Expanded Edition 2006.

[58] Levitt, Steven D., and Stephen J. Dubner, SuperFreakonomics:
Global Cooling, Patriotic Prostitutes And Why Suicide Bombers

https://twitter.com/housecor/status/1115959687332159490
http://www.drdobbs.com/architecture-and-design/interview-with-alan-kay/240003442
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate

Should Buy Life Insurance, William Morrow & Company, 2009.

[59] Lippert, Eric, Which is faster?, blog post at
https://ericlippert.com/2012/12/17/performance-rant, 2012.

[60] Martin, Robert C., and Micah Martin, Agile Principles, Patterns, and
Practices in C#, Prentice Hall, published 2006.

[61] Martin, Robert C., Clean Code: A Handbook of Agile Software
Craftsmanship, Prentice Hall, 2009.

[62] Martin, Robert C., Dirk Riehle, and Frank Buschmann (editors),
Pattern Languages of Program Design 3, Addison-Wesley, 1998.

[63] Martin, Robert C., The Sensitivity Problem, blog post at
http://butunclebob.com/ArticleS.UncleBob.TheSensitivityProblem,
2005?

[64] Martin, Robert C., The Transformation Priority Premise, blog post at
https://blog.cleancoder.com/uncle-
bob/2013/05/27/TheTransformationPriorityPremise.xhtml, 2013.

[65] McConnell, Steve, Code Complete, Second Edition, Microsoft Press,
2004.

[66] Meszaros, Gerard, xUnit Test Patterns: Refactoring Test Code,
Addison-Wesley, 2007.

[67] Meyer, Bertrand, Object-oriented Software Construction, Prentice
Hall, 1988.

[68] Milewski, Bartosz, Category Theory for Programmers, originally a
series of blog posts at
https://bartoszmilewski.com/2014/10/28/category-theory-for-
programmers-the-preface, 2014–2017. Also available as a print book,
Blurb, 2019.

[69] Minsky, Yaron, Effective ML, recording of a lecture given at Harvard.
The recording itself is available on YouTube at https://youtu.be/-
J8YyfrSwTk, but you may instead prefer Yaron Minsky’s web page

https://ericlippert.com/2012/12/17/performance-rant
http://butunclebob.com/ArticleS.UncleBob.TheSensitivityProblem
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.xhtml
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface
https://youtu.be/-J8YyfrSwTk

that includes a bit of context: https://blog.janestreet.com/effective-ml-
video, 2010.

[70] Neward, Ted, The Vietnam of Computer Science, blog post at
http://blogs.tedneward.com/post/the-vietnam-of-computer-science,
2006.

[71] Norman, Donald A., The Design of Everyday Things. Revised and
Expanded Edition, MIT Press, 2013.

[72] North, Dan, Patterns of Effective Delivery, Roots opening keynote,
2011. A recording is available at https://vimeo.com/24681032.

[73] Nygard, Michael T., Release It! Design and Deploy Production-
Ready Software, Pragmatic Bookshelf, 2007.

[74] Nygard, Michael T., DevOps: Tempo, Maneuverability, and
Initiative,DevOps Enterprise Summit conference talk, 2016. A
recording is available at https://youtu.be/0rRWvsb8JOo.

[75] Oram, Andy, and Greg Wilson (editors), Making Software: What
Really Works, and Why We Believe It, O’Reilly, 2010.

[76] O’Toole, Garson, The Future Has Arrived – It’s Just Not Evenly
Distributed Yet, online article on
https://quoteinvestigator.com/2012/01/24/future-has-arrived, 2012.

[77] Ottinger, Tim, Code is a Liability, 2007. This was originally a blog
post, but the original domain has since lapsed and been taken over by
another entity. The blog post is still available via the Internet Archive
at
http://web.archive.org/web/20070420113817/http://blog.objectmentor
.com/articles/2007/04/16/code-is-a-liability.

[78] Ottinger, Tim, What’s this about Micro-commits?, blog post at
https://www.industriallogic.com/blog/whats-this-about-micro-
commits, 2021.

[79] Peters, Tim, The Zen of Python, 1999. Originally a mailing list post,
it’s long been available at https://www.python.org/dev/peps/pep-0020.

https://blog.janestreet.com/effective-ml-video
http://blogs.tedneward.com/post/the-vietnam-of-computer-science
https://vimeo.com/24681032
https://youtu.be/0rRWvsb8JOo
https://quoteinvestigator.com/2012/01/24/future-has-arrived
http://web.archive.org/web/20070420113817/http://blog.objectmentor.com/articles/2007/04/16/code-is-a-liability
https://www.industriallogic.com/blog/whats-this-about-micro-commits
https://www.python.org/dev/peps/pep-0020

[80] Pinker, Steven, How the Mind Works, The Folio Society, 2013. I’m
referring to my Folio Society edition, which, according to the
colophon, “follows the text of the 1998 Penguin edition, with minor
emendations.” It was “first published by W.W. Norton in 1997.”

[81] Pope, Tim, A Note About Git Commit Messages, blog post at
https://tbaggery.com/2008/04/19/a-note-about-git-commit-
messages.xhtml, 2008.

[82] Poppendieck, Mary, and Tom Poppendieck, Implementing Lean
Software Development: From Concept to Cash, Addison-Wesley,
published 2006.

[83] Preston-Werner, Tom, Semantic Versioning, specification at
https://semver.org. The root of the web site shows the latest version.
As I’m writing in October 2020, the latest version is Semantic
Versioning 2.0.0, which was published in 2013.

[84] Pyhäjärvi, Maaret, Five Years of Mob Testing, Hello to Ensemble
Testing,blog post at https://visible-quality.blogspot.com/2020/05/five-
years-of-mob-testing-hello-to.xhtml, 2020.

[85] Rainsberger, J.B., Integration Tests Are a Scam, Agile 2009
conference talk, 2009. A recording is available at
https://www.infoq.com/presentations/integration-tests-scam.

[86] Rainsberger, J.B., tweet at
https://twitter.com/jbrains/status/167297606698008576, 2012.

[87] Reeves, Jack, What Is Software Design?, C++ Journal, 1992. If, like
me, you don’t have a copy of the C++ Journal lying around, you can
find the article online.
https://www.developerdotstar.com/mag/articles/reeves_design.xhtml
seems to have been stable for years. Also available as an appendix in
[60].

[88] Ries, Eric, The Lean Startup: How Constant Innovation Creates
Radically Successful Businesses, Portfolio Penguin, 2011.

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.xhtml
https://semver.org/
https://visible-quality.blogspot.com/2020/05/five-years-of-mob-testing-hello-to.xhtml
https://www.infoq.com/presentations/integration-tests-scam
https://twitter.com/jbrains/status/167297606698008576
https://www.developerdotstar.com/mag/articles/reeves_design.xhtml

[89] Robinson, Ian, Jim Webber and Emil Eifrem, Graph Databases: New
Opportunities for Connected Data. Second Edition, O’Reilly, 2015.

[90] Scott, James C., Seeing Like a State: How Certain Schemes to
Improve the Human Condition Have Failed, Yale University Press,
1998.

[91] Seemann, Mark, 10 tips for better Pull Requests, blog post at
https://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests,
2015.

[92] Seemann, Mark, A heuristic for formatting code according to the AAA
pattern, blog post at https://blog.ploeh.dk/2013/06/24/a-heuristic-for-
formatting-code-according-to-the-aaa-pattern, 2013.

[93] Seemann, Mark, A red-green-refactor checklist, blog post at
https://blog.ploeh.dk/2019/10/21/a-red-green-refactor-checklist, 2019.

[94] Seemann, Mark, Church-encoded Maybe, blog post at
https://blog.ploeh.dk/2018/06/04/church-encoded-maybe, 2018.

[95] Seemann, Mark, CQS versus server generated IDs, blog post at
https://blog.ploeh.dk/2014/08/11/cqs-versus-server-generated-ids,
2014.

[96] Seemann, Mark, Conway’s Law: latency versus throughput, blog post
at https://blog.ploeh.dk/2020/03/16/conways-law-latency-versus-
throughput, 2020.

[97] Seemann, Mark, Curb code rot with thresholds, blog post at
https://blog.ploeh.dk/2020/04/13/curb-code-rot-with-thresholds,
2020.

[98] Seemann, Mark, Devil’s advocate, blog post at
https://blog.ploeh.dk/2019/10/07/devils-advocate, 2019.

[99] Seemann, Mark, Feedback mechanisms and tradeoffs, blog post at
https://blog.ploeh.dk/2011/04/29/Feedbackmechanismsandtradeoffs,
2011.

https://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests
https://blog.ploeh.dk/2013/06/24/a-heuristic-for-formatting-code-according-to-the-aaa-pattern
https://blog.ploeh.dk/2019/10/21/a-red-green-refactor-checklist
https://blog.ploeh.dk/2018/06/04/church-encoded-maybe
https://blog.ploeh.dk/2014/08/11/cqs-versus-server-generated-ids
https://blog.ploeh.dk/2020/03/16/conways-law-latency-versus-throughput
https://blog.ploeh.dk/2020/04/13/curb-code-rot-with-thresholds
https://blog.ploeh.dk/2019/10/07/devils-advocate
https://blog.ploeh.dk/2011/04/29/Feedbackmechanismsandtradeoffs

[100] Seemann, Mark, From interaction-based to state-based testing, blog
post at https://blog.ploeh.dk/2019/02/18/from-interaction-based-to-
state-based-testing, 2019.

[101] Seemann, Mark, Fortunately, I don’t squash my commits, blog post at
https://blog.ploeh.dk/2020/10/05/fortunately-i-dont-squash-my-
commits, 2020.

[102] Seemann, Mark, Functional architecture is Ports and Adapters, blog
post at https://blog.ploeh.dk/2016/03/18/functional-architecture-is-
ports-and-adapters, 2016.

[103] Seemann, Mark, Repeatable execution, blog post at
https://blog.ploeh.dk/2020/03/23/repeatable-execution, 2020.

[104] Seemann, Mark, Structural equality for better tests, blog post at
https://blog.ploeh.dk/2021/05/03/structural-equality-for-better-tests,
2021.

[105] Seemann, Mark, Tautological assertion, blog post at
https://blog.ploeh.dk/2019/10/14/tautological-assertion, 2019.

[106] Seemann, Mark, Towards better abstractions, blog post at
https://blog.ploeh.dk/2010/12/03/Towardsbetterabstractions, 2010.

[107] Seemann, Mark, Visitor as a sum type, blog post at
https://blog.ploeh.dk/2018/06/25/visitor-as-a-sum-type, 2018.

[108] Seemann, Mark, When properties are easier than examples, blog post
at https://blog.ploeh.dk/2021/02/15/when-properties-are-easier-than-
examples, 2021.

[109] Shaw, Julia, The Memory Illusion: Remembering, Forgetting, and the
Science of False Memory, Random House, 2017 (paperback edition;
original published in 2016).

[110] Thomas, Neil, and Gail Murphy, How Effective Is Modularization? in
[75], 2010.

https://blog.ploeh.dk/2019/02/18/from-interaction-based-to-state-based-testing
https://blog.ploeh.dk/2020/10/05/fortunately-i-dont-squash-my-commits
https://blog.ploeh.dk/2016/03/18/functional-architecture-is-ports-and-adapters
https://blog.ploeh.dk/2020/03/23/repeatable-execution
https://blog.ploeh.dk/2021/05/03/structural-equality-for-better-tests
https://blog.ploeh.dk/2019/10/14/tautological-assertion
https://blog.ploeh.dk/2010/12/03/Towardsbetterabstractions
https://blog.ploeh.dk/2018/06/25/visitor-as-a-sum-type
https://blog.ploeh.dk/2021/02/15/when-properties-are-easier-than-examples

[111] Tornhill, Adam, Your Code as a Crime Scene: Use Forensic
Techniques to Arrest Defects, Bottlenecks, and Bad Design in Your
Programs, Pragmatic Bookshelf, 2015.

[112] Tornhill, Adam, Software Design X-Rays: Fix Technical Debt with
Behavioral Code Analysis, Pragmatic Bookshelf, 2018.

[113] Troy, Chelsea, Reviewing Pull Requests, blog post at
https://chelseatroy.com/2019/12/18/reviewing-pull-requests, 2019.

[114] Webber, Jim, Savas Parastatidis, and Ian Robinson, REST in Practice:
Hypermedia and Systems Architecture, O’Reilly, 2010.

[115] Weinberg, Gerald M., The psychology of computer programming.
Silver anniversary edition, Dorset House Publishing, 1998.

[116] Williams, Laurie, Pair Programming in [75], 2010.

[117] Wlaschin, Scott, Cycles and modularity in the wild, blog post at
https://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-
wild, 2013.

[118] Woolf, Bobby, Null Object in [62], 1997.

https://chelseatroy.com/2019/12/18/reviewing-pull-requests
https://fsharpforfunandprofit.com/posts/cycles-and-modularity-in-the-wild

Index

.NET, 310
1.0, 26
analyser, 29, 30, 67
Boolean default, 208
default culture, 255
deprecation, 220
ecosystem, 26
entry point, 309, 310
Iterator, 165
lightweight transaction, 249
package manager, 282
SQL Server, 245
time resolution, 122

;,see semicolon
@Deprecated, see Deprecated annotation
[Fact], see attribute
[InlineData], see attribute
[Obsolete], see attribute
[Property], see attribute
[Theory], see attribute
#pragma, 67
80/24 rule, 134

A
A/B testing, 300
AAA, see Arrange Act Assert

abstraction, 69
bad, 144
definition, 65, 100, 142, 176, 261, 264
example, 69
good, 146, 147
level, 151
high, 51, 311, 312, 323
versus detail, 79, 320

Accelerate (book), 5, 14, 37, 50
acceleration, 185
Accept header, see HTTP
acceptance test, see test
acceptance-test-driven

development, 61
access modifier, 319

internal, 143, 319
private, 76, 206, 319

action
bias, 237
Controller, 260
impure, 273, 274
outcome, 178

activity, 13–15, 18
exhausting, 190
involuntary, 42
mandatory, 276
physical, 279
recurring, 282
regular, 283
scheduled, 284

actor model, 318
Acyclic Dependency Principle, 321

acyclic graph, 314
Adapter, see design pattern
addition (arithmetic), 273
address

email, see also email, 102, 120, 268, 296
resource, 294–296, 325

AddSingleton method, 81
administrator rights, 299
ADO.NET, 79, 295
affordance, 156, 157, 176
agency, 42
agenda

meeting, 280
personal, 32

agile process, see process
AI, see artificial intelligence
Airbus A380, 17
airplane, 16

bomber, 16
algorithm, 89, 279, 287–289

distributed system, 300
inefficient, 289
sort, 44, 45

Ambient Context, 256
analyser, see tool
Analysis Paralysis, 49
annotation, 220
anonymous type, 64
antipattern, 158
API, 66, 156, 219

acronym, 156
ADO.NET, 79

affordance, 156, 176
analyser, 26
capability

advertisement, 158
too many, 158

change, 66, 162
date and time, 122
dependency, 219
deprecated, 221
design, 103, 158, 160

encapsulation, 176
exercise, 162
goal, 165
good, 155, 158, 171
principles, 155, 168, 176

FsCheck, 304, 305
HTTP

invalid input, 93
tools, 82
versus REST, 66

Maybe, 146
memorisation, 113
object-oriented, 221
public, 169–171, 196
reasoning about, 166, 171
REST, 205

benefit, 326
client, 325
deployed, 252
feature flag, 209

links, 323
logging, 272
secure, 251
test, 324
user interface, 323

specialised, 164
statically typed, 161, 167
stringly typed, 164
unfamiliar, 161, 185
xUnit.net, 90

APL, 134
application

line-of-business, 4
Application Programming Interface, see API
application/json, 62, 63
apprentice, see craft
architect, xxv, 3, 5, 314
architecture, 287, 288, 299, 300

component-based, 322
conventional, 51
Conway’s law, 285
CQRS, 166, 299
diagram, 51
fractal, 151, 152, 154, 174

big picture, 305
example, 175, 265, 312, 314, 325

functional core,
imperative shell, 273, 319

impact, 318
lack of, 37, 285
large-scale, 211

layered, 51, 52, 318
monolith, 318
one-size-fits-all, 318
poka-yoke, 321
ports and adapters, 319, 323
resilient, 299
Tradeoff Analysis Method, xxv
variety, 318

argument, see also parameter, 93, 242
additional, 55
as context, 265
counting, 153
generated, 301
logging, 272
mutation, 164
name, 93
passing, 142
replacing constant, 88
required, 156, 170, 171
string, 57
swap, 242, 268
valid, xxvii

armed guard, 292
army

air corps, 16
buyer, 16

Arrange Act Assert
as scientific method, 97
definition, 56
degenerate, 57
purpose, 57
structure, 69, 115

array, 304
JSON, 205
params, 170
replaced by container, 89
replacing scalar, 89
sort, 44

art
enjoyment of, 10
more than science, 65
of programming, 10
of risk assessment, 127
of software engineering, 37, 220, 327

determinism, 125
discomfort, 292
example, 93, 248
experience, 99, 256

shift toward
methodology, 47

artefact, 153
always current, 168
code, 181
inspection, 159
mistake-proof, 159
of packaging, 319
preservation, 153

artificial intelligence, 38
artist, 3, 10, 299

comics, 10
ASP.NET

configuration, 81, 150, 173, 317
Decorator, 271

Dependency Injection, 76, 77, 207, 270
entry point, 22, 26
exception, 93, 268
familiarity, 150, 310
IConfiguration interface, 311
Main method, 310
Model View Controller, 63, 67, 151
options, 315
web project, 21

Assert.True, 55
assertion, 65, 72, 116

abstract, 65, 323
append, 62, 225–227, 234
collection, 72, 231, 232
elegant, 72
explicit, 117
fail, 63
library, 55
message, 67
multiple, 226
phase, 56, 69, 73, 91, 97
roulette, 62, 226
single, 226
superficial, 55
tautological, 97, 233

Assertion Message, see design pattern
Assertion Roulette, see design pattern
asset, 47
assumption, 52, 248
attacker, 293–296, 298, 299
attention, 42, 46, 307

to keyword, 142

to metric, 105, 130, 132, 154
to names, 161
to performance, 289
to quality, 129, 154
to test suite, 247

attribute, 59, 301, 308
custom, 245
Fact, 90, 93
InlineData, 90, 95, 103, 301, 302
Obsolete, 220
Property, 301
Theory, 90, 93
UseDatabase, 245

audit, 16, 267
trail, 16, 267, 296

authentication, 251
absence of, 37
as mitigation, 296
JSON Web Token, 297
packaged, 318
two-factor, 112

author, 195–198
co-, 190
code, 41
main, 308
package, 282
pull request, 195

authorisation, 251, 311, 314, 318
automation, 19, 22, 32, 81

backup, 284
bisection, 252
build, 17, 18, 22, 32

test, 54, 55
checklist, 29
code review, 28
database, 83
HTTP, 82
quality gate, 32
test, 20, 82
threshold, 131
tool, 24, 25, 29, 32

awareness, 42
of circumstances, 188
of code rot, 154
of quality, 132

Azure, see Microsoft Azure
Azure DevOps Services, 24, 178, 197

B
B-17, 16, 17
B-tree, 45
backup, 178, 284
backwards compatibility, 219
bacteria growth, 307
balance, 56, 57, 69, 292, 296
Barr, Adam, 11, 13
base class, see class
baseball, 33, 41, 43
Bash, 19, 22, 252
bat-and-ball problem, 33, 41, 43, 44, 53, 71
batch file, 22
batch job, 319
BDD, see behaviour-driven development

Beck, Kent, 4, 116, 139, 210, 257
human mind, 115

behaviour
addition, 203
change, 162, 174, 227
combined, 141
complex, 138
compose, 262
correct, 248, 297
desired, 119, 128, 213
draining of, 81
existing, 203
external, 98
hidden, 204, 208, 274
incomplete, 209
incorrect, 268
new, 204
non-deterministic, 246, 265
object, 107
of existing software, 54
proper, 73, 121
test, 69, 115, 208

add, 198
unlawful, 181
with side effect, 266

behaviour-driven development, 53
behavioural code analysis, 306–308
benign intent, 126
bicycle, 41, 42, 278
big O notation, 289
big picture, xxv, 305, 316
bill by the hour, 292

binary classification, 29
bisection, see also Git, 251, 252, 255, 256
blog post, xxiii, xxvii, 255
boiler plate, 310
bomber, see airplane
Boolean

default, 208
expression, 55
flag, 144, 206, 207
negation, 172
return value, 145, 171, 261, 263
value, 261

bootstrap, 55, 223
Bossavit, Laurent, 192
bottleneck, 281, 289
boundary, 50, 61

HTTP, 61
system, 68, 69
test, 69, 76, 83
value, 300, 301

Boy Scout Rule, 31
brain, 151, 239

capacity, 175
compared to computer, 38, 112
constraint, 45, 46, 99, 152
emulator, 136
evaluating formal statements, 41
fits in your

API, 165
application, 150
architecture, 151, 152

chunk, 262, 265
code, 45, 46, 114, 115, 135, 141, 196, 198, 234
composition, 259
essential quality, 100
example, 142, 147, 175
part, 151, 174, 318
software engineering, 46

jumping to conclusions, 43, 45, 97
keeping track, 15, 153, 265

reduction, 88
seven chunks, 111, 136
side effect, 264

long-term memory, 111
misled, 44, 72
motor functions, 42
short-term memory, 39, 133
source code for, 43
subconscious, 41, 42
tax, 264
trust, 91
working memory, 131

branch, 81, 118, 138, 147, 152
add, 134
instruction, 39, 133
logic, 81
on constant, 119
outcome, 138
render, 152

break, 194, 238, 239, 276–279, 285
compatibility, 219, 220

contract, 66
cycle, 321
existing implementation, 122
functionality, 216

breakage, 35
breaking change, 196, 219–221, 227, 282
brewer, 12
bribe, 292
bridge, 12, 13, 326
Brooklyn, 117
Brooks, Fred, 46
browser, 314, 323
budget, 244, 262
buffer overflow, 293, 298
bug, see also defect, 174, 228, 241, 247, 298

address, 241
despite best efforts, 201
discovery, 192, 193
fix, 35, 192, 204, 220, 282
struggle, 40
production, 8
regression, 227, 228
report, 180, 246
reproduction, 184, 243
tons of, 289
uncaught, 252
zero, 240

build, 22, 131
automated, 17, 18, 22, 32, 54
configuration, 25
pipeline, 246
release, 22

repeatability, 272
script, 22, 23, 32, 55, 245
step, 22

build quality in, 158, 240
building a house, 3–7
bus factor, 188, 308
business

decision, 169, 299
goal, xxv, 319
logic, 169, 171, 246, 257, 322
out of, 5, 36, 37
owner, 293
process, 100
rule, 118, 124, 138, 290

encapsulation, 70, 72
by the book, 31

C
C, 293

language family, xxiv, 28, 135
C++, xxiv, 36, 44, 293
C#

80x24 box, 135
8, 28, 31, 92, 146, 162
access modifier, 319
analyser, 25
branching and looping
keywords, 133
compiler, 92, 94, 104, 144, 220
Data Transfer Object, 70
framework guidelines, 143

inheritance, 315
language

high-level, 298
verbose, 21

like Java, xxvi
managed code, 293
object-orientation, 266
operator

null-coalescing, 104, 133
null-conditional, 302

overload
return-type, 217

previous versions, 146
property, 143, 301, 302
struct, 207
syntax, xxvi

sugar, 143
type system, 100
var keyword, xxvi
verbosity, 134

CA1822, 139
CA2007, 57
CA2234, 58
cache, 267, 271

read-through, 271
cadastral map, 290–292
calculation, 13, 33, 38, 273
CalendarFlag class, 207, 208
call site, see also caller, 106, 210, 212–214
caller, 142, 146, 167, 211

check return value, 147

direct, 150
interaction with object, 99, 108, 109, 156
migrate, 211, 215–219, 221
multiple, 106
responsibility, 108

Campidoglio, Enrico, 19
canary release, 300
capacity

brain, 175
memory

long-term, 111, 112
short-term, 136, 137, 141
working, 114, 131

of restaurant, 115–117, 246, 249
hard-coded, 125, 126, 168
remaining, 123

of team, 192
system, 293

car, 41, 42, 87
Carlsberg, 12
carpenter, 9
case keyword, 133
category theory, 264
Category Theory for Programmers (book), 264
CD, see Continuous Delivery
cent, 41
certificate, 284

X.509, 284
chain of command, 285
chair, 156, 239, 277

affordance, 156, 157

office, 157
change, see also breaking

change
code structure, 98, 113
safe, 227
concurrent, 183
coupling, 306, 307
documentation, 168, 181
easy, 210
frequency, 307
impending, 221
in place, 215
motivation, 53
perspective, 7, 277
rate, 139, 257
significant, 210
small, 35, 61, 96
state, 78, 164, 165

Characterisation Test, 54, 58
chat forum, 284
chatter, 285
checklist, 16–18, 41

automated, 29
Command Query Separation, 166
do-confirm, 18
engineering, 13, 37
more than, 32
new code, 17, 32, 54, 55, 57
outcome, 32, 178
read-do, 18
Red Green Refactor, 224
STRIDE, 292, 294

surgery, 17
take-off, 17
team, 282
warnings as errors, 25

chef de cuisine, 3, 169
children’s book, 38
chunk, 115, 141, 262

abstraction, 141, 148, 149, 152, 175, 265
code, 114, 151
hex flower, 312
pathways, 138, 152
short-term memory, 112, 141
slot, 136, 148, 149

Circuit Breaker, see design pattern
claim

role, 297, 298
class, 27

base, 122, 229, 230, 232, 315
concrete, 213
declaration, 27, 268, 270, 310, 311
delete, 221
Domain Model, 145
field, 108, 139, 153, 206

immutable, 265
instance, 139

Humble Object, 123
immutable, 72, 107, 173
inheritance, 315
instance, 75, 76
member, 143, 150

instance, 67, 139, 142

name, 163, 169, 316
nested, 76, 232
private, 76
sealed, 27

clean code, 160
Clean Code (book), 288
client, 49, 111, 284

API, 66
code, 156, 326
concurrent, 183, 184
external, 61
HTTP, 62, 92, 247, 325, 326

test, 324, 325
postcondition, 103
SDK, 326

cloud, 20, 21, 45, 295
co-author, 190
coaching, xxv, 10, 88, 191
code, see also production code

auto-generated, 25, 40, 54, 72, 153
bad, 259–261
block, 139

complexity, 152
decomposition, 154, 155
small, 134, 144, 257

calling, 108, 214
dead, 7
defensive, 28, 108, 109
deletion, 7, 26, 27, 132, 187, 238
ephemeral, 19
high-level, 305

high-quality, 153
humane, 46, 174
imperfect, see also imperfection, 91, 123
incomplete, 204
liability, 47
low-level, 154
malicious, 126
metric, see metric
minimal, 20
multithreaded, 250
network-facing, 293
obscure, 43
organisation, 43, 51, 52, 59

layer, 51
quality, see quality
read more than written, 39, 44, 160
readable, 40, 41, 135, 196,
redundant, 98, 187
removal, 237, 251
reuse, 40, 319
self-documenting, 161, 170
shared, see code ownership
simplest possible, 52
transformation, 88, 89, 119
unfamiliar, 146
unmaintainable, xxiv
unsurprising, 310

code analysis
rule, 27, 28, 59, 66, 67, 75, 139
static, 32, 57, 58, 75

driver, 53, 81

false positive, 29, 60
like automated code review, 28
suppression, 67
turn on, 31
warnings as errors, 29

tool, 24
code base

example, see example
greenfield, 307
memorise, 111
table of contents, 314
unfamiliar, 323

Code Complete (book), 139, 288
code ownership, 187

collective, 187–190, 194, 195, 197, 199
weak, 199

code quality, see quality
code reading, 196, 197
code review, 28, 189, 190, 192–199, 285, 295, 308

big, 195
civilised, 197
initial, 193
on-the-go, 190
repeat, 197
suggestion, 197

code rot, see also decay, 7, 130, 154, 325
code smell, 25, 56, 62, 139, 142

Feature Envy, 143, 154
coffee, 239

machine, 239
cognitive constraint, 45, 99, 176

coherence, xxiv, 43, 186
cohesion, 139, 154
collapse, 265
colleague, 78, 195, 239

help, 82, 198
collective code ownership, see code ownership
combat aviation, 185
combinatorial explosion, 69
Command, 166, 262
Command Query Responsibility

Segregation, 166, 299
Command Query Separation, 166
composition, 262

determinism, 264
predictability, 264
side effect, 258
signature, 171
violation, 261

command-line interface, 21
command-line prompt, 19
command-line tool, 21
command-line utility, 51
command-line window, 19
comment, 23, 180

apology, 161
Arrange Act Assert, 56
commit, 187
good, 167
legitimate, 167
misleading, 160, 161, 196
not all bad, 161
pragma, 67

replace with named method, 161, 167
stale, 161, 167, 168
TODO, 67
versus clean code, 160

Common Lisp, 36
commons, 290
communal table, 138
communication, 179, 285

ad hoc, 285
arbitrary, 285
channel, 219
face to face, 284
structure, 285
written, 285

commute, 278
comparison, 123

string, 255
compartmentalisation, 114
compatibility, 219

backwards, 219
breaking, 219, 220

compiler
C#, 92, 220
error, 25, 28, 29, 210
leaning on, 208, 210
Roslyn, 26
warning, 24–30, 220

complexity, see also cyclomatic complexity, 46, 307
analysis, 153, 308
collapsed, 265
essential, 46
hidden, 148, 149

increase, 129
indicator, 132
limit, 138
measure, 130
of called methods, 141
prediction, 132, 134
structure, 151

compliance, 235
Composite, see design pattern
composition, 258, 259, 315

nested, 260, 262
object, 259
pure function, 264
sequential, 262–264, 266, 274

Composition Root, see design pattern
comprehensibility, xxvi, 136, 153
computational complexity theory, 289
computer, 7, 327

away from, 239, 277–279, 285
compared to brain, 38, 39, 45, 46
disconnected, 292
in front of, 278, 279
limits, 45
personal, 11
reboot, 236

computer science, 44, 45, 287, 289
education, 8
Vietnam, 6

concentration, 42
concurrency, 183, 184, 191, 247, 249
conference, 31

GOTO, 158

software engineering, 11
conference room, 191
confidence, 111, 224, 227, 248, 250
configuration

application, 173, 174
ASP.NET, 81, 173, 317
feature flag, 207, 208
file, 82, 206, 208, 315
network, 293
system, 151, 207
value, 172, 173

Configure method, 150, 311, 312
ConfigureAwait method, 27, 57–59
ConfigureServices method 83, 151, 173, 312, 313

convention, 311
deleted, 27

ConfigureWebHost method, 83
connection string, 81–83, 151, 317

missing, 226
consciousness, 42
consensus, 191, 197

lack of, 68, 73, 107
constant, 75, 88, 89, 119
constraint, 6, 99
construction, 12, 13

real-world, 5, 6, 13
constructor, 170, 172–174, 207, 215–217

argument, 74, 230
as Query, 262
auto-generated, 72
overload, 170
parameterless, 76

precondition, 144
side effect, 262
validity, 106

Constructor Injection, see design pattern
contemplation, 26, 190, 278
contention, 183
context, 40, 126, 160, 181
surrounding, 142, 325

Continuous Delivery, 5, 19, 20, 85, 306
Continuous Deployment, 204, 275, 282, 291
Continuous Integration, 131, 182, 184, 204

server, 20, 22, 24, 58, 182, 246
contract, 66

advertisement, 161
design by, 99, 103
encapsulation, 99
external, 61
guarantee, 103
object, 87, 108
regression, 61
signing, 87

convention, 67, 180, 311
naming, 26

Conway’s law, 285
cooperation, 12, 284
Copenhagen, 42, 278 GOTO conference, 158
copilot, 18
copy and paste, 306
correctness, 289
cost, 4, 21, 305

sunk, 195, 210, 240
counter seating, 117

coupling, 306, 320
change, 306, 307
team, 308

Covid-19, 281
CQRS, see Command Query Responsibility Segregation
CQS, see Command Query Separation
craft, 8–10
crash, 92, 174, 268, 293, 298

airplane, 16
run-time, 268

creativity, 13
crisps, 7
critical resource, 187
cross-cutting concern, 201, 267, 314, 315

Decorator, 267, 271, 274
list of, 267

cross-platform, 36
cruft, 37, 153
cruising speed, 201
crunch mode, 193
culture, 32

hustle, 32
of quality, 154
oral, 285, 290

cURL, 82
customer, 36

paying, 219
potential, 28
scare away, 296, 297

CVS, 18, 178
cycle, 320–322

life, 52

Red Green Refactor, 96, 97
release, 5

cyclomatic complexity, see metric

D
daily stand-up, 194, 275, 282

format, 275
Danish alphabet, 256
Danish teachers’ union, 280
dark room, 7
data

access, 74, 316, 320–322
component, 316
implementation, 314
interface, 321
package, 321, 322

export, 257
import, 257
persisted, 64
tampering, 293, 294
version control, 305

Data Definition Language, 245
data store, 50, 61, 271
data structure, 45, 70
Data Transfer Object, 69, 70, 315

configuration, 173
role, 70
validation, 140, 142
versus Domain Model, 72, 145

data type
built-in, 101

integer, 101
database

access, 268, 295, 318
backup, 78, 284
cache, 267
cloud, 295
column, 183
create, 245, 246
data structure, 45
design, 6
fake, 73
graph, 78
implementation, 151
in-memory, 73
language, 78
lock, 183
logging, 272
permissions, 299
query, 45, 123, 265, 289
read and write, 268
real, 73
referential transparency, 264
relational, 6, 78, 151, 166, 243
restore, 284
row, 183

delete, 164
row version, 183
schema, 6, 78, 79, 257
SDK, 282
secure, 295
set up, 83
state, 246

tampering, 294
tear down, 83, 245
test, 243, 245, 246
transaction, 250
update, 243

DateTime struct, 72, 145, 171, 211
daughter, 280
DDD, see domain-driven design
DDL, see Data Definition Language
DDoS, see denial of service
dead code, 7
deadline, 192, 193
deadlock, 58
Death Star commit, 186
Debug configuration, 25
debugging, 256
decay, see also code rot

gradual, 130, 131, 153
decomposition, 114, 115, 138

code block, 154, 155
relative to composition, 258, 274
separation of concerns, 274

Decorator, see design pattern
default culture, 255

Danish, 256
default value, 124, 208
defect, see also bug, 35, 88

address, 241, 243, 249
deal with later, 240
detect, 159
elusive, 250
expose, 228

finding, 192, 251–255
fix, 129
ideal number of, 240
in the wild, 240
introduction of, 252
platform, 298
prevention, 193
production, 127
reproduction, 127, 241, 246, 250
run-time, 28, 268
troubleshooting, 235

defensive code, see code
delegation, 65, 169, 174, 175
DELETE, see HTTP
delimiter, 135
demonstration flight, 16
denial of service, 293

distributed, 293, 298
dependency

change frequency, 283
composition, 207
external, 243
formal, 172
injected, 152, 260
isolation of, 68
management, 6
package, 321
polymorphic, 172
primitive, 207
replace with fake, 84
source control, 237
stability, 283

update, 282, 283
visible, 172

dependency analysis, 287, 300, 306
dependency cycle, 321
Dependency Injection

book, xxiii
Container, 237, 270

configure, 270
dispense with, 207
register, 76, 77, 151, 317
responsibility, 207

Singleton lifetime, 76, 173
Dependency Injection Principles, Practices, and Patterns (book), 207
Dependency Inversion Principle, 79, 320
deployment

automation, 19
repeatability, 272
sign-off, 23

deployment pipeline, 49, 250
establishment, 20, 23, 85
issue, 20

Deprecated annotation, 220
deprecation, 220, 221
describing a program, 6
design

by contract, 99, 100, 103, 109
error, 158

design pattern, 224, 279, 300
Adapter, 315
Assertion Message, 67
Assertion Roulette, 62, 226

Circuit Breaker, 267, 271
Composite, 259
Composition Root, 322
Constructor Injection, 75, 172, 310
Decorator, 267–271, 274, 317
Humble Object, 80, 123, 242
Iterator, 165
Model View Controller, 63, 67, 151, 311
Null Object, 76
Repository, 74
Unit of Work, 249
Value Object, 72
Visitor, 160

Design Patterns (book), 259
design phase, 6
desktop application, 293
Deursen, Steven van, 207
developer, see also software

developer
as resource, 5
back-end, xxiv
in a hurry, 319
main, 199, 289
original, 284, 289
remote, 194
responsibility, 295
single, 192
Visual Studio, 30

development, see also software development
back-end, 9, 188
front-end, 9
greenfield, 2, 203

individual, 231
user-interface, 188

development environment, see also IDE, 135, 157, 168
development machine, 22, 82, 205, 255, 256
Devil’s Advocate, 119–121, 123–125, 128
DI, see Dependency Injection
diff, 179, 181

tool, 238
Dijkstra, Edsger, 11
diminishing returns, 191
directed graph, 227
directory, see also subdirectory, 19, 314, 315
discipline

academic, 288, 305
engineering, 10, 11, 13, 14, 31

future, 327
esoteric, 34
intellectually demanding, 33

discomfort, 292
discoverability, 158
discriminated union, see sum type
discussion

repeated, 285
technical, 284
written, 284

disillusionment, 10
disjoint set, 139
do keyword, 133
document database, see database
documentation, 59, 60, 160, 167

high-level, 168
online, 28

rule, 57, 58
scalability, 280
stale, 41, 168, 196

doing dishes, 278
dollar, 33
domain, 148
Domain Model, 70–72, 74, 315, 318–322

abstraction, 79
clean, 79
evolution, 100
motivation, 145, 169

domain name, 284
domain-driven design, 53, 169
domain-specific language, 78
Don’t repeat yourself, see DRY principle
done done, 192
door handle, 156
dot-driven development, 158
dotnet

build, 22, 55
test, 55

double-blind trial, 237
double-entry bookkeeping, 53, 91, 224
driver

code analysis, 75, 81
code as answer to, 88
example, 53
extrinsic, 53
multiple, 76
of behaviour, 68
of change, 53, 103
of implementation, 61

of transformation, 91
test, 74, 115, 224

integration, 208
driving, 41, 42
Dronning Alexandrine’s bridge, 12
DRY principle, 107
DSL, see domain-specific language
DTO, see Data Transfer Object
duplication

address, 147, 234
look out for, 52
needless, 197
of implementation code, 91
test code, 61
validation, 144

DVCS, see version control system
dyslexia, 181

E
economics, 8, 132
edge

of system, 265, 266
edge case, 69
editor, see also IDE, 13

vertical line, 135
education

computer science, 8, 44
self, 280

effort, 16
continual, 35
heoric, 210

little, 42
mental, 42, 43
small, 32

Eiffel (language), 100
elevated privileges, 236
elevation of privilege, 293, 299
email

address
as identification, 102
bogus, 102
validation, 102

confirmation, 229
grammar, 180
personally identifiable

information, 294, 296, 297
procrastination, 244, 277
unit test, 229, 230, 303

employee, 297
hire, 282
new, 113
regular, 194

empty string, 57, 103, 105
emulator, 39, 136
encapsulation

broken, 144
business rule, 70, 72
contract, 87, 99
Data Transfer Object, 70
good, 156
invariants, 144
misunderstood, 108

poor, 173, 223
purpose, 165, 169
state, 106
versus strings, 58

enclosure diagram, 307, 308
engineer, see also software

engineer, 3, 12, 13, 177
chemical, 12
real, 13, 177, 199

engineering, see also software engineering, 29, 33
deterministic process, 327
discipline, 10, 11, 13, 14, 31

future, 327
mechanical, 44
method, 13, 17
practice, 199, 210
real, 326
relationship with science, 44, 98
security, 300, 308

English, 181 US, 256
Entity Framework, 79
entry point, 52, 150, 309, 310 ASP.NET, 22, 26
environment

concern, 326
configuration, 82
data, 264
development, 135, 157, 168
pre-production, 20
production, 85, 127

debugging, 256
deployment, 23

lack of, 20
programming, 24, 25

Equals method, 72
equilibrium

unstable, 153
error

compile-time, 92, 160
finding, 255
pilot, 16
programmer, 243
report, 93
reproduction, 243
spelling, 25

error message, 17, 18
essay, 160
essence, 141, 146
ethics, 292
eureka, 278
exception, 301

ArgumentNullException, 92
ArgumentOutOfRange-Exception, 300, 301
handling, 92
message, 93, 107, 180
NotImplementedException, 213
NullReferenceException, 92
run-time, 92

versus compiler error, 160
type, 92
unhandled, 93, 127, 268

exclamation mark, 91, 92, 94, 96
execution

branch, 119

path, 88, 115
repeatability, 272

exercise, 284, 316
API design, 162, 163
physical, 278, 279

experience, 37, 125
accumulated, 9, 10
individual, 11, 13, 93, 99, 235, 256
personal, 255
professional, xxiv, 44
subjective, 42

experiment, 15, 97, 236, 237, 241
Git, 18, 185, 186
result, 11

F
F#, 134, 146, 160, 322, 323
Fact attribute, 90, 93
fail fast, 103
failure, 148, 210, 247

single point of, 187
Fake Object, see Test Double
FakeDatabase class, 69, 73, 74, 83, 122, 212, 213
fallacy

logical, 37
sunk cost, 195, 210, 240

false negative, 97, 226, 247, 248
false positive, 29, 60, 247
falsifiability, 97, 237
fault tolerance, 267, 271, 300
feature, 50, 52, 192, 193

add, 35, 40, 129
big, 220
completion, 193, 208
configuration, 208
cutting across, 267
delivery, 276
deployed, 201
difficult, 204
done, 192
end-to-end, 52
incomplete, 204
new, 204, 209, 220, 282
optional, 28
security, 251, 252, 271
subdirectory per, 314
suggestion, 278

feature branch, 220
Feature Envy, see code smell
feature flag, 184, 204, 206–209, 220

configuration, 208
fee, 28

reservation, 296
feedback, 49, 52, 60, 160
feudalism, 290
Fiddler, 82
file, 314

code, 315
dirty, 231
executable, 318
organisation, 314

filter, 122, 123, 262, 314, 315
finite state machine, 300

firefighting, 193, 275
Firefox, 314
first language, 181
fits in your head, 150–152, 154, 176, 262, 274, 312

API, 165
architecture, 314
chunk, 262, 265, 312
code, 114, 115, 135, 198, 309
composition, 259
criterion, 196
evaluation, 141, 311, 317, 323
example, 142, 147, 175
object, 100
part, 174, 318
system, 114

flag, see also feature flag, 144, 206, 208
flow, see also zone, 42, 277
focus, 16, 244
Foote, Brian, 153
for keyword, 133
foreach keyword, 133
forensics, 40
forgetfulness, 16, 38
formatting, 187, 196, 198

blank line, 56
culture, 256
Git commit, 179, 180
guard, 24
line width, 136

foundation, 6, 11, 19
Fowler, Martin

code that humans can understand, 45, 176

Data Transfer Object, 70
quality, 35, 37, 40, 47
Strangler, 211

FP, see functional programming
fractal architecture, see architecture
fractal tree, 151, 152
fractals, 151, 154
framework

automated testing, 14
data-access, 52
experience with, 311
familiarity, 309, 310
MVC, 63, 67
not-invented-here syndrome, 6, 36
security, 271
unit testing, 55, 90, 305

Freakonomics (book), 132
Freeman, Steve, 7
frequency, 283

change, 307
frog

boil, 130
fruit

low-hanging, 24
FsCheck, 301–305

NegativeInt, 302
NonNegativeInt, 302, 304
PositiveInt, 302

function
self-contained, 46

functional core, imperative shell, 266, 273, 318
example, 319

in presence of
object-oriented code, 274

functional programming, 14, 238, 264, 266
influence on C#, xxvi

FxCop, 26

G
Gabriel, Richard P., 36
game programming, 9
Gantt chart, 6
gardening, 3, 7, 8
Gawande, Atul, 16, 17
generics, 146, 215

nested, 216
geographical survey, 127, 128
geometry, 127
GET, see HTTP
GetHashCode method, 72
getter, 108, 143
GetUninitializedObject method, 107
Gibson, William, 14, 327
Git, 14

.git directory, 19
50/72 rule, 179, 180
Bash, 19, 252
basics, 18
bisect, 251–255
blame, 40
branch, 184–187, 197
command line, 19, 179, 180
command-line interface, 18

commit
big, 186
empty, 19
five minutes from, 218
hidden, 231
ID, 253
self-explanatory, 180, 181
small, 185

commit message, 167, 168, 178–182, 198
co-author, 190
empty, 178

connection string, 82
database schema, 79
de-facto standard, 18, 178
experimentation, 185
game changer, 231
graphical user interface, 18, 19, 180
HEAD, 231
history, 59, 186, 187
init, 19
issues, 18
learning, 18
log, 179, 283
master, 184, 185, 187, 197

deployment, 23
incomplete feature, 204

merge, 197, 198, 213, 216, 218
online service, 19, 197
push, 186
reason for using, 182

rebase, 1
repository, 19, 255

local, 184
secrets, 82
stage, 233
stash, 186, 231, 232, 241
tactics, 178
user-friendliness, 18

Git flow, 197
GitHub, 19, 178, 197, 284
GitHub flow, 197, 198
GitLab, 178
glucose, 43
Go To Definition, 315, 317
Go To Implementation, 317
God Class, 158
Goldilogs, 272
GOOS, see Growing Object-Oriented Software, Guided by Tests (book)
GOTO conference, 158
government, 35
grammar, 180
graph

acyclic, 314
directed, 227

graph database, 78
graphical user interface, 18, 19, 82, 164, 180
greater than, 123, 255, 256
greater than or equal, 123, 302
grocery store, 279
ground level, 34
Growing Object-Oriented Software, Guided by Tests (book), 7, 61, 78, 325
growing season, 290

guarantee, 87, 103, 108
guard

armed, 292
Guard Clause, 100, 139, 145, 187, 262

natural numbers, 101, 102
null, 75, 94

GUI, see graphical user interface
GUID, 264, 265, 294
guidance, 11, 21
guideline, 10, 26, 88, 89, 103
guild, see craft
guitar, 10

H
hack, 32, 92, 131, 321
hammer, 291
happy path, 64
hard drive, 19, 112, 186
hard limit, 138
hard-coded

capacity, 125, 126, 168
constant, 89
path, 66
return value, 61
value, 75, 77, 78, 83, 87, 88, 303

hardware, 14, 21, 290
control of, 126

hash, 183
hash index, 45
Haskell, 160, 274

absence of null references, 146

big function, 134
category theory, 264
learning, 266
linter, 25
Maybe, 146
QuickCheck, 301
side effect, 166

HDMI, 159
head waiter, see maître d’hôtel
headline, 180
height restriction barrier, 159
hello world, 54, 55, 61
helper method

extract, 139, 234
motivation, 66

Henney, Kevlin, 6
heroism, 210
heuristic, 10

API design, 155
Arrange Act Assert, 56, 69, 115
for first feature, 64

hex flower, 137, 138, 141, 142, 148–151, 312, 313, 317
hexagon, 137, 138, 142, 150
Hickey, Rich, 46, 238
hierarchy, 314

directory, 315
inheritance, 315
of communication, 167, 179, 219
rigid, 285
type, 227

hill, 34
hipster, 117, 138, 168

history, 12
line width, 135
of software development, 14, 15
rewrite, 1, 19

HIV, 29
Hoare, Tony, 11
HomeController class, 63, 207
hotspot, 307, 308
house, 3, 5, 87
House, Cory, 196
HTTP, 318, 322, 326

200 OK, 55
201 Created, 55
204 No Content, 115
400 Bad Request, 93
403 Forbidden, 297, 298
500 Internal Server Error, 93, 94, 116, 226
boundary, 61
client, 247
code, 319
content negotiation, 62
DELETE, 294, 296
GET, 205, 251, 293, 296, 297, 323
header, 325

Accept, 62
Content-Type, 62, 63
Location, 295

interaction, 205, 209
POST, 78, 82, 294, 323, 325
PUT, 242, 294
request, 21, 67, 151, 312

logging, 272
response, 226, 297

content, 226
logging, 272

specification, 116
status code, 55, 65, 94, 116, 261

error, 115
verb, 66

HttpClient class, 324, 325
HTTPS, 295, 296
humane bounds, 154
humane code, 46, 174
Humble Object, see design pattern
hunt-and-peck typing, 281
hypermedia controls, 66, 205
hypothesis, 37, 97, 236, 237, 241

I
IConfiguration interface, 82, 311
IDE, 14

acronym, 281
file view, 316
guidance, 21, 170, 281
navigation, 310, 315
refactoring, 223, 227, 234
use to compile, 22

if keyword, 133
illegal states

unrepresentable, 159
illusion

maintainability, 26

immutability
class, 72, 107, 173

field, 265
object, 106

imperative mood, 18, 179, 180
imperfection, 91, 106, 123, 126
implementation detail, 172, 264

coupling, 107, 320
Dependency Inversion Principle, 79
hidden, 165, 170
irrelevant, 176
unknown, 99, 171, 174
view, 316

improvement
heuristic, 119
loss of ability, 35

impure action, 273, 274
incantation, 236
incentive

perverse, 132, 292
indentation, xxv, 271
infinity, 152
information disclosure, 293, 296
infrastructure

cloud, 45
code, 204
digital, 35

inheritance, 315
single, 315

initialisation, 106
object, 144

InlineData attribute, see attribute

inlining, 290
input, 50, 103

acceptable, 103
invalid, 93, 95, 100, 103
logging, 273
malevolent, 293
null, 99
parsing, 147, 148
query, 50
required, 156
valid, 100
validation, 77, 92, 115

insight, 210, 239, 268, 278
inspiration, 17, 44, 279
instruction, 17, 160
instrumentation, 267, 272
insurance, 292
intangible, 13, 44, 291, 292
integer, see also number, 100

16-bit, 101
8-bit, 101
default value, 124
non-negative, 302
non-positive, 301, 302
signed, 102
unsigned, 102

Integrated Development Environment, see IDE
integration test, see test
IntelliSense, 157
intent, 163, 167, 196, 198

benign, 126
code, 161

interaction
external world, 145, 229
hidden, 262
HTTP, 205, 209
IDE, 281
interpersonal, 197
object, 99, 103, 108
social, 177

Interactive Development Environment, 281
interception, 269, 295
interface

add member, 122, 213
affordance, 156
cycle, 320
delete member, 214
extra method, 212
go to implementation, 315
versus base class, 229

internal, see access modifier
Internet, 14
internet

disconnected from, 292
interpreter, 180
introvert, 190
intuition, 33, 38, 41
invariant, 80, 109, 144, 145, 156
investigation, 16, 241, 307
IPostOffice interface, 230, 231, 233, 271, 317
IReservationsRepository interface, 73, 74, 76, 77, 79, 81, 83, 121, 123, 156,

161–163, 211–214, 269, 271, 316, 317
IRestaurantManager interface, 260, 261
IT professional, 293, 295, 298

Iterator, see design pattern

J
Java

deprecation, 220
developer, xxiv
example code, xxiv, xxvi
high-level language, 298
inheritance, 315
like C#, xxvi
managed code, 293
null, 146

JavaScript, 25, 282, 298
Jenkins, 24
job security, 113
journeyman, 9, 10
JSON, 250

array, 205
configuration, 315
document, 61, 70, 83, 92, 173
object, 64
parsing, 326
representation, 205, 323, 325
response, 61, 62
serialisation, 64, 325

JSON Web Token, 251, 252, 282, 297, 298
redaction, 272

judgment, 37, 220
human, 326
moral, 31, 32
subjective, 53, 79

jumping to conclusions, 43, 45, 97
JWT, see JSON Web Token

K
Kahneman, Daniel, 42, 43
Kanban board, 275
kata, 280
Kay, Alan, 11, 12
keyboard, 191, 281
keyboard shortcut, 315, 316
king, 290, 291
King, Alexis, 147
KISS, 238
kitchen, 117, 118, 168, 169
kitchen timer, 277
knowledge

existing, xxiii, xxiv, 11
expansion, 280
local, 290
loss of, 285
packaged, 26, 45
painstakingly acquired, 114

knowledge distribution, 308
knowledge gap, 288
knowledge map, 308
knowledge silo, 190, 194
knowledge transfer, 191
Knuth, Donald, 11

L
lab coat, 237

lambda expression, 270
land, 87, 290

ownership, 290
language, see also programming language

familiarity, 309
first, 181

latency, 190, 192
laterisnever, 240
LaTeX, xxviii, 4
law of unintended consequences, 132
layer, 52, 320
layered architecture, see architecture
leader

technical, 132
leadership, 300
lean manufacturing, 159
lean on the compiler, 210
lean software development, 158, 240
Lean Startup (book), 50
left to right, 122
legacy code, 111, 223

avoid, 114
deliberate, 129
escape, 114
gradual decay, 153
memory, 113, 136
programmer, 113
realisation, 129
refactoring, 114

legacy system, 211
legibility, 290–292
less than, 123, 255

less than or equal, 123
liability, 87

code, 47
library

JSON Web Token, 282
mock object, 237
open-source, 219
reusable, 45, 58

life cycle, 52
light, 7, 9, 210
line

blank, 56
Arrange Act Assert, 56, 57, 69, 115
Git commit message, 179
section, 139

vertical, 135
wide, 271

line break, 23, 271
line width, xxvii, 135
line-of-business application, 4
lines of code, see metric
LINQ, 122, 124, 125
linter, 24, 25, 30, 32

as driver, 53, 76
false positive, 29
warnings as errors, 29

Liskov Substitution Principle, 227
listen to your tests, 325
literal, 59
literary analysis, 160
localhost, 205

Location header, see HTTP
locking

optimistic, 183, 184
pessimistic, 183

log, 93, 267, 268
log entry, 174, 270, 271
logging, 77, 267, 268, 270–273, 315, 317, 318
LoggingPostOffice class, 271
LoggingReservations Repository class, 270, 271
logistics, 5, 13
long hours, 193, 279
loop, 133

tight, 289
lottery factor, 188
low-hanging fruit, 24
LSM-tree, 45
Lucid, 36, 40
lunch, 194, 282

M
maître d’hôtel, 102, 169, 246

authentication, 297
schedule, 251, 293, 296, 304

machine code, 290
machine learning, 9
magic spell, 236
Main method, 265, 309, 310
maintainability
illusion, 26
maintainer, 189
maintenance burden, 214

maintenance mode, 4
maintenance task, 221
maintenance tax, 212
MaitreD class, 169–174, 304
man-in-the-middle attack, 293, 295, 296
management, 191, 194
manager, 31, 177, 178, 210, 292

non-technical, 31, 292
manoeuvrability, 185, 231, 233
manufacturing, 327

lean, 159
Martin, Robert C.

abstraction, 65, 100, 142, 176, 261, 264
Transformation Priority Premise, 88, 89
triangulation, 119, 123

mason, 5
master, see craft
materialised view, 299
mathematics, 33, 41, 264

fractals, 151, 152
matryoshka dolls, 268, 269
Maybe, 146, 162
measure, 37, 97, 246, 290

triangulation, 127
measurement, 291, 292

performance, 267
proxy, 292
triangulation, 127, 128

medieval village, 290
meeting, 235, 275, 280
memorisation, 111–114
memory

aid, 17
fading, 112
long-term, 111–113, 136, 141
short-term, 111–113, 154

capacity, 136, 137, 141
chunk, 141
hexagonal layout, 142
limit, 39, 46, 99, 133
magical number seven, 39

slot, 136, 138, 149
unreliable, 38, 39
working, 39, 111, 114, 131

memory footprint, 289
merge conflict, 183
merge hell, 182–184, 220
merge sort, 45
metaphor, 3–8, 38, 97

accountant, 8
author, 8
brain, 38, 112
gardening, 7, 8
house, 4–8
Russian matryoshka dolls, 269
software craftsmanship, 9
triangulation, 127

metering, 267
method

signature, 164
method call

blocking, 102
methodology, xxv, 15, 256

deliberate, 56
engineering, 13
lack of, 10
quantitative, 327
scientific, 97
software development, 47, 53
software engineering, 50

metric
attention, 130, 154
cyclomatic complexity, 130–133, 147, 149, 150, 306

example, 136, 138–140, 174, 260, 262, 311, 312, 317, 323
explicitly consider, 152
of called methods, 140
one, 242
seven, 46, 105, 169
threshold, 136
Visual Studio, 105

depth of inheritance, 105
invent, 132
lines of code, 132, 134

attention, 154
example, 139, 140, 174, 260, 312, 317, 323
explicitly consider, 152
Visual Studio, 105

monitor, 130
practicality of, 132
useful, 132
Visual Studio, 133

Meyer, Bertrand, 100, 166
micro-commit, 187

micro-service, 318
microseconds, 289
Microsoft, 28, 72, 78, 293
Microsoft Azure, 268
Milewski, Bartosz, 264
milliseconds, 289
mindset

engineering, 14
team, 132
tinkering, 36

minimal working example, 251, 255, 256
mistake

all the time, 41
cheap, 185
commit, 185
easy to make, 53, 224
hide, 186, 201
prevention, 126
proof, 158
reduce risk of, 88
repeat, 243
typing, 281

misuse, 158
mitigation, 292, 295, 297, 298
mob programming, 184, 191, 192, 199, 316

driver, 316
mobile phone app, 293
mock, 73, 107
Model View Controller, see design pattern
module, 189, 258, 314
money, 12, 21, 35
monolith, 219, 318, 319, 323

morals, 31, 32
morning, 194, 275, 280
motivation, 53, 57, 309

Domain Model, 145
extrinsic, 53
intrinsic, 38
package, 321
process, 178
rule, 28

motor function, 42
multi-tenancy, 269, 323, 325
mutation, 106

artefact, 153
MVC, see Model View Controller
myopia, 37, 192, 255

N
naming convention, 26
nanosecond, 122, 289
NASA, 11
NATO, 11
natural number, see number
navigation, 24, 111, 151, 180, 314
need it later, 215
negative number, see number
nested class, see class
nesting, 259, 260, 262, 274

dolls, 268, 269
object, 268

nihilism, 10
nil, 89

no-op, 67
Nobel laureate, 42
noble, 290, 291
non-breaking change, 219
non-determinism, 265, 266, 273
non-nullable reference type, see null
Norman, Donald A., 156, 157
NoSQL, 78
notification area, 277
NPM, 282
NuGet, 282
null, 28

ArgumentNullException, 92
check, 92, 99
coalescing operator, 104, 133
Guard Clause, 75, 81, 94, 96, 98
nil, 89
non-nullable reference type, 28, 99, 106, 144, 162
null-forgiving operator, 144
nullable reference type, 28, 72, 92, 146, 162

alternatives to, 146
gradually enabling, 31
suppression, 144

NullReferenceException, 92
return value, 161

Null Object, see design pattern
NullRepository class, 76, 77, 81
number, see also integer 128-bit, 294

increment, 133
natural, 100–102, 106, 300
negative, 102, 107, 300, 301

one, 133
positive, 102, 108
random, 273
seven, 39, 46, 111, 131, 133, 138
ten, 41, 43
zero, 107

number-line order, 122
NUnit, 301

O
object

composition, 259, 315
equality, 72
immutable, 106
polymorphic, 268
shared, 76

object-oriented API, 221
object-oriented code, 238, 266, 274
object-oriented

composition, 258, 259
object-oriented

decomposition, 274
object-oriented design, 139, 142, 160, 259, 274
object-oriented language, xxiv, 146, 266
object-oriented

programming, 14, 100, 108, 211, 238
object-relational mapper, 78, 79, 243, 320, 321

reinvention, 6
versus SQL, 238

obligation, 87, 108
Obsolete attribute, see attribute

Occurrence class, 215–218
office, 279

home, 284
open, 284, 285
own, 284

one-time code, 112
open-source software, 278, 285
OpenAPI, 205
opening hours, 168, 169
operations specialist, 177
operations team, 78
operator

greater-than, 123
greater-than-or-equal, 123
less-than, 123
less-than-or-equal, 123
minus, 302
null-coalescing, 104, 133
null-forgiving, 92, 144
ternary, 104
unary, 302

Option, 146
order

ascending, 122
ordering, 227
organisation

healthy, 32
rhythm, 193
unhealthy, 32

ORM, see object-relational mapper
outcome

actual, 56, 97

adverse, 127
direct, 178
expected, 56, 72, 97, 116
falsifiable, 97
improvement, 17, 29, 32
negative, 178
positive, 178
predicted, 97
quantitative, 97
successful, 13, 124
versus process, 178

output, 70, 100, 103
indirect, 229
parsed, 148
terminal, 252, 253
to input, 262, 264
type, 163

over-engineering, 215
overbooking, 246, 247, 268

test, 116, 117, 226
overload, 213

add, 212, 213
return-type, 217

overlogging, 272
overtime, 192

P
package, 30, 283, 318, 319, 321–323

author, 282
data access, 321, 322
distribution, 282

encapsulation, 156
reusable, 44, 45, 301
test, 322
update, 282, 283
version, 282

package manager, 282
package restore, 237
pair programming, 189–192, 199, 295

rotation, 190
parameter, see also argument, 152

how many, 153
query, 50
swap, 242, 243, 268

Parameter Object, 153
parameterless constructor, see constructor
Parametrised Test, see test
params keyword, 170
parsing, 144, 145, 147, 148, 173
partial function, 148
password, 296
pattern language, xxiii
pause point, 16
peasant, 290
performance, 201, 287–290, 292

fixation, 292
issue, 58

performance monitoring, 267
permission, 198, 293, 299
persistent storage, 77
personal computer, 11
personally identifiable information, 296
perverse incentive, 132, 292

petri dish, 307
phase, 5

act, 56, 57, 69, 97, 115, 124
arrange, 56, 69, 115, 124
assert, 56, 73, 91, 97
construction, 5, 6
design, 6
green, 97, 98, 104, 107, 125
programming, 5
red, 97, 107, 125
refactor, 96, 98, 104

phone number, 112, 113
physical activity, 279
physical design, 4
physical object, 12, 13, 156
physical work, 279
physics, 44
PII, see personally identifiable information
pilot, 16–18

test, 16
pipeline, see deployment pipeline
pixel, 258
plain text, 54

document, 61
planning, 5, 6, 13, 49
platform, 258, 309

defect, 298
plot of land, 87, 290
poka-yoke, 159, 321

active, 159
passive, 159

policy, 21, 198

politeness, 198
polymorphism, 146, 172, 229, 268
Pomodoro technique, 276, 277
pop culture, 12
ports and adapters, 318, 319, 323
positive number, see number
POST, see HTTP
PostAsync method, 66
postcondition, 226–228

contract, 108
guarantee, 108
invariant, 109, 144
Postel’s law, 103
weaken, 228

Postel’s law, 103, 106, 109
Postel, Jon, 103
Postman, 82
PowerShell, 22
precondition, 143, 145, 156

check, 105, 144, 145
contract, 108
invariant, 109, 144
Postel’s law, 103
responsibility, 108
strengthen, 232
weaken, 212, 227

predicate, 260, 262, 263
predictability, 264
prediction, 37, 97, 236, 237
PRINCE2, 276
private, see access modifier
probability, 127

problem
address, 236, 237
alternative solution, 9
dealing with, 236
detect, 252
disappear, 236
explaining, 239
manifestation, 236, 272, 278
reaction, 236
reproduction, 246, 251
solving, 235, 238
stuck, 238
unanticipated, 193

process, 275, 291
agile, 284
approval, 190
compilation, 167
external, 299
formal, 308
iterative, 197
long-running, 102
mistake-proof, 159
subconscious, 279
versus outcome, 178

procrastination, 276
product owner, 177
production code

as answer to driver, 88
bug, 228
change, 224, 228
confidence, 224
coupled to test code, 228

edit, 203
refactoring, 227, 229
rule, 58

productivity, 191, 235, 278, 281, 285
deleting code, 132
long hours, 279
measure, 279
metric, 132
negative, 279
personal, 279, 285
tip, 280

profit, 35
Program class, 22, 26, 27, 150
programmer, see also developer

good, 45, 176
irreplacable, 113
legacy code, 113
maintenance, 105, 309
other, 177, 310
responsibility, 295
single, 192
suffering of, 129
third-party, 326
user-interface, 188

programming by coincidence, 236, 237
programming language

advanced, 14
C-based, 135
components, 258
cross-platform, 36
density, 134
emulator, 39

functional, 266
high-level, 298
keyword, 133
layout, 135
learning, 18, 279, 280
mainstream, 320, 321
new, 40
statically typed, 157, 161
tools, 24, 25
verbosity, 21, 134

progress, 12, 14, 35, 45
project, 4–6
project management, 6, 37
proper noun, 256
property, 301

C#, 301, 302
declaration, 72
getter, 143
read-only, 72, 75, 172, 176
Visual Basic, 301

Property attribute, see attribute
property-based testing, see test
prophylaxis, 134
prose, 180, 181
Pryce, Nat, 7
psychology, 42
pull request, 197, 198, 285

big, 134, 194, 198
punch card, 289
punctuation, 180
pure function, see also referential transparency, 237, 264–266, 273, 274
PureScript, 166

purpose, 36, 37, 44, 258, 296
PUT, see HTTP
puzzle, 33, 43

Q
quality, 129, 301

build in, 159, 240
essential, 100
internal, 31, 35, 37, 98, 154

better, 131
low, 40

quality gate, 31, 32
quantifiable result, 36, 97
Query, see also Command Query Separation, 166

composition, 262
constructor, 262
deterministic, 264, 265
example, 176, 262, 263
favour, 166
non-deterministic, 264, 266
parameter, 50
side effect, 261, 262
type, 163, 171

queue, 50, 249, 299
QuickCheck, 301
quicksort, 45

R
race condition, 246–248
Rainsberger, J.B., 47
RAM, 39, 45, 112

random number, 273
random number generator, 264
random value, 301, 302
range, 148, 212, 213
readability, 41, 281

code review criterion, 196
nudge, 135
optimise for, 40, 79

reader
future, 59, 160, 163

readme, 168
real world, 29, 100, 258
reality, 6, 10, 52, 192, 290

physical, 6
reboot, 236, 237
receiver, 160
recursion, 89
Red Green Refactor, 96, 97, 125, 128, 224

execution time, 244
red phase, 103, 107

Reeves, Jack, 5, 13
refactoring, 98, 203

Add Parameter, 228
backbone of, 224
big, 220
candidate, 139
code ownership, 187
commit, 229
database, 245
Extract Method, 187, 227, 228
IDE, 234
Inline Method, 187

legacy code, 114
Move Method, 143, 227
opportunity, 125
prophylactical, 134
Rename Method, 218, 227
Rename Variable, 227
safe, 227, 228
test, 231
test code, 224, 232, 234

apart, 229
to property-based test, 301–303
upon rot, 325

toward deeper insight, 209
Refactoring (book), 143, 223, 224, 227
reference type, see also null, 28
referential transparency, 264, 265, 273
regression, 227, 228

likelihood, 126
prevention, 55, 61, 127, 243

relationship type, 206
release, 219–221

canary, 300
Release configuration, 22, 25
release cycle, 5
repeatability, 272
repetition, 251
Repository, see design pattern
repudiation, 293, 296
research, 5, 38
resiliency, 298–300
REST, 66

restart, 236
restaurant owner, 294, 296
RESTful, 205
RESTful Web Services Cookbook (book), 116
return on investment, 299
revelation, 278
review, 13, see code review
reviewer, 195–198
rework, 220
Richardson Maturity Model, 66
risk, 299
risk assessment, 127
robot, 156

industrial, 258, 327
role

claim, 297, 298
object, 70

rollback, 246
roof, 6
roofer, 9
room

dark, 7
root cause, 255
Roslyn, 26, 29
rotation, 56, 57
routine, 194, 279
routing, 151, 311
rubber duck, 239, 240, 251
rubber stamp, 194, 198
Ruby, 89, 282
RubyGems, 282
rule

against decay, 131
analyser, 26, 27, 30, 31, 57, 139
breaking, 131
business, 118, 124, 138, 290

encapsulation, 70, 72
Command Query Separation, 166
disable, 60
documentation, 58
extra, 264
formatting, 256
hard, 132
line height, 135
machine-enforced, 31
motivation, 28
redundant, 132
threshold, 131, 132
versus food for though, 89

rule of thumb, 10, 182, 204, 210, 242
running, 278
Russian dolls, 268, 269

S
sabotage, 119, 233
safety net, 224, 228, 234, 244
salary, 21
scaffold, 20
scalar, 88, 89, 119
schedule

certificate update, 284
package update, 283
synchronisation, 190

team, 282
school, 160, 177, 280, 281
science, 44, 97, 98
scientific evidence, 13
scientific method, 97, 236, 237, 256
scientist, 3, 44
screen, 42, 239, 258, 281
Scrum, 276, 283

sprint, 283
retrospective, 282

SDK, 282, 326
sealed keyword, 27
seating

bar-style, 118, 168
counter, 117
overlap detection, 174
second, 138, 168, 169
single, 117, 138, 168

security, 271, 287, 288, 290, 292, 300
balance, 296
mitigation, 292

security by obscurity, 294
Seeing Like a State (book), 290
self-hosting, 55, 324
self-similarity, 154
Semantic Versioning, 218, 219
semicolon, 135
sender, 160
sensitivity, 231, 290
separation of concerns, 257, 268, 274, 314
serialisation, 64, 249, 250, 325
server, 21

setter, 108, 143
seven, 46, 136–138, 151–154

magical number, 39
proxy, 46
threshold, 130, 131, 133
token, 39, 133

shared code, see code ownership
shell script, 22
shifting sands of individual experience, 11, 13, 93, 99, 235, 256
shopping, 279
shower, 278
side effect, 162, 164–166, 171, 258, 259, 261–266

constructor, 262
Haskell, 323
hidden, 43
logging, 273

sign-off, 13, 23, 198, 199
signal, 29, 247
signature

digital, 296
method, 145, 146, 162–164, 166, 170, 171

identical, 213
Simple Made Easy (conference talk), 238
simplest thing that could possibly work, 75, 117, 215
simplicity, 46, 238
simulation, 13, 21
single point of failure, 187
SingleOrDefault method, 124–127
Singleton lifetime, see Dependency Injection
skill, 199

decomposition, 155
legacy, 113

literary composition, 160
situational, 8
specialised, 9
troubleshooting, 235

slice
vertical, 49–52, 54, 60, 61, 77

first, 64, 85
happy path, 64
purpose, 64

small step, 61, 88, 194, 220
SMTP, 102
snapshot, 183, 184, 187
social media, 258
software

reusable, 45
successful, 4
sustainable, 67
unsuccessful, 4

software craftsmanship, 8–10
software crisis, 11, 14
software developer, see also developer

collaboration, 189
professional, 31

skill, 8
software development

asynchronous, 285
highest-ranked problem, 182
history, 14, 15
industry, 9, 13, 14, 45

age, 3
improvement, 8

management, 292
process, 52, 276

latency, 192
regular, 35

professional, 29, 235
reality, 203

project
bad, xxiv

sustainable, 40
team, 177, 287

software engineering, 34, 35, 37, 41, 44–47
aspirational goal, 11
classic, 308
conference, 11
deterministic process, 125
pocket, 11
practice, 182
process, 177
science, 97
traditional, 300, 308

SOLID principles, 300
sort order, 256 Danish, 256
sorting algorithm, see algorithm
source control system, see version control system
spaghetti code, 261, 285, 319
special case, 212, 237
specialisation, 188
Speculative Generality, 52
spelling error, 25
split screen configuration, 135
spoofing, 293, 294

SQL, 78, 212, 238, 245, 299
named parameter, 295
script, 315
SELECT, 123

SQL injection, 293, 295, 296, 299
SQL Server, 78, 299
SSTable, 45
Stack Overflow, 14, 240, 251, 280
stack trace, 309
stakeholder

Continuous Delivery, 276
disregard for engineering, 31
feedback from, 49, 85
involvment, 308
meeting, 280
prioritisation, 290
security, 292, 293

stand-in, 73
standard

de-facto, 18, 179
standard output, 50
Startup class, 23, 27, 55, 63, 76, 81, 83, 150, 173, 310, 311, 313, 315

constructor, 82
Stash, 178
state

application, 78, 121, 164
change, 164, 165

local, 165
consistent, 218
illegal

unrepresentable, 159

inspection, 230
invalid, 106–108, 159
mutation, 106
object, 106, 164
system, 249
transformation, 88
valid, 106, 144, 156

stateless class, 76, 80, 173
statement

formal, 41
statement completion, 281
static code analysis, see code analysis
static flow analysis, 144, 147
static keyword, 27, 67, 139, 142, 147
statistics, 178
steering wheel, 41, 42
stored procedure, 299
Strangler, 210, 220

class-level, 215–217
method-level, 214

strangler fig, 210, 211
STRIDE, 292–294, 300
string comparison, 255
stringly typed code, 58, 164, 242
stroll, 239
struct keyword, 207
structural equality, 72
stub, 73
subdirectory, see also directory, 314, 315
subroutine, 39
subterfuge, 32
subtype, 227

Subversion, 18, 178
suffering, xxiv, 129
sum type, 160
sunk cost fallacy, see fallacy
SuperFreakonomics (book), 132
supertype, 227
support agreement, 78
surgeon, 17
surgery, 17
survey

geographical, 127, 128
sustainability, 34–37, 40, 44, 45, 47, 114

versus speed, 67
SUT, see System Under Test
SUT Encapsulation Method, 66
Swagger, 205
Swiss Army knife, 158, 164
switch keyword, 133
syntactic sugar, 143
system

edge, 265, 266
restore, 284
running, 268

System 1, 42, 43, 279
System 2, 42, 43
system tray, 277
System Under Test, 66, 69, 301, 316, 325

coupling to test, 107
description, 128, 304
sabotage, 233
state, 230
triangulation, 127

T
tab, 315, 316
tagged union, see sum type
take-off, 16
tampering, 293–295
task

big, 276
complex, 16
getting started, 276

tautology
assertion, 97, 233

TCP, 103
TDD, see test-driven development

team
change, 187
high-performing, 5
low-performing, 5

team coupling, 308
team member

new, 111, 150
TeamCity, 24
technical debt, 7, 8, 178
technical expertise, 31
temperature, 326
terminal, 135
terrain, 291
test

acceptance, 61
add to existing code base, 24
as measurment, 127
automated

as driver, 53
as guidance, 167
database, 83
ease, 19
favour, 82
system, 82

boundary, 69, 76, 83
coverage, 118, 223, 250
deterministic, 246, 250
developer, 21
example, 300
exploratory, 208, 241
failing, 63, 96, 241
high-level, 65
in-process, 243
integration, 54, 208, 242–246, 297, 318
iteration, 96
manual, 82, 85
non-deterministic, 246, 248, 250
parametrised, 89, 90, 107, 300, 301

append test case, 119, 225
compared to property, 301

passing, 96, 97
property-based, 53, 279, 301–305
refactoring, 301
regression, 241
revisit, 116
slow, 243, 246, 249
smoke, 82, 85
state-based, 73

test case, 90, 91

append, 225
before and after, 245
comprehensive, 304
exercise, 250
good, 119
redundant, 128
single, 88

test code, 224
change, 234
coupled to production
code, 228
duplication, 61
edit, 224, 225, 228, 232, 234
maintenance, 234, 325
problem, 91
refactoring, 227, 229, 231, 232, 234, 326
rotate, 56, 57

test data, 303
Test Double, 73

Fake Object, 73, 84, 122
Test Spy, 229, 231

test framework, 90, 282
test library, 58
test method, 89, 119

add, 225
orchestration, 248, 249

test pilot, see pilot
test runner, 58
Test Spy, see Test Double
test suite, 53

build script, 55
execution time, 244

failing, 248
noise, 247, 248
safety net, 224
trust, 223, 248

Test Utility Method, 65, 324–326
test-driven development, 53, 63

acceptance, 61
beginner, 119
coaching, 191
enabling, 54
execution time, 244
mob programming, 316
one among alternative
drivers, 76
outside-in, 53, 61, 64, 68, 78
poka-yoke, 159
scientific method, 97, 98
security feature, 251
success story, 240
teaching, 119
technology choice, 78
triangulation, 127

Test-Driven Development By Example (book), 116
text file, 21
textbook, 280
The Leprechauns of Software Engineering (book), 13
The Pragmatic Programmer (book), 9, 279
Theory attribute, see attribute
thinking

deliberate, 42
effortful, 43

thread, 57, 58, 76

multi, 250
race, 246, 247
single, 249

thread safety, 80, 173
threat, 292, 299

identification, 299
mitigation, 295, 296, 298

threat modelling, 292, 293, 299, 300
threshold, 130–133, 135, 306, 307

aggressive, 154
throughput, 326
tick, 122
time, 227, 264, 266, 273, 306

management, 238
of day, 264
personal, 279
wasting, 276, 279

time-boxing, 238, 276, 277, 280
timeout, 248, 250
TODO comment, 67
tool, 24, 72

analyser, 24–30, 53, 76, 88, 302
warning, 28, 29

GUI, 82
linter, 24

topology, 21
Tornhill, Adam, 305
touch type, 280, 281
tradition, 9, 10, 268
traffic, 293, 298, 326
transaction, 87, 183, 246, 249, 250

roll back, 246

TransactionScope class, 250
transformation

atomic, 88
code, 88, 89, 91, 115, 119
Data Transfer Object, 70
input, 50

Transformation Priority Premise, 75, 89, 115, 119, 128
tree, 151, 211, 314

B, 45
dead, 211
fractal, 151, 152
hollow, 211
host, 210
leaf node, 151
LSM, 45

Trelford, Phil, 158
triangulation, 119, 123, 127

geometry, 127
troubleshooting, 235, 236, 272

debugging, 256
experience, 255
ordeal, 8
superpower, 256
support future, 272
understanding, 268

trunk, 151, 184
trust, 87, 224, 248
try/catch, 92
TryParse method, 98, 99
Twitter, 244, 277
two-factor authentication, see authentication
type

anonymous, 64
custom, 170
generic, 216
polymorphic, 229
static, 164
wrapper, 302

type declaration, 28
type hierarchy, 227
type inference, xxvi
type information, 157

static, 170
type signature, 162
type system, 106, 157

static, 28, 100
type-driven development, 53
TypeScript, xxiv
typist, 5, 281
typo, 187, 196, 281

U
ubiquitous language, 169
unauthorised access, 293
understanding, 235–238, 241, 251, 252

bug, 40
computer, 45, 176
difficult, 35, 40, 46
easier, 216
human, 45, 176
struggling, 182

undo, 18, 19, 186
unintended consequence, 132

unit, 68, 69, 107
Unit of Work, see design pattern
unit test, see test

definition, 68
universal conjecture, 98
urgency, 283
Uri class, 58, 59, 66
URL, 66, 83, 205, 294, 296

documented, 205
opaque, 206
template, 66

UrtCop, 26
USB, 159
Usenet, 280
user, 4, 52, 296

regular, 293, 299
user code, 151, 298
user group, 31
user interface

before database, 6
feature flag, 209
slice, 50

using directive, 21

V
vacation, 41, 187, 191, 205
validation, 77, 92, 147, 154, 261

email address, 102
input, 115
object-oriented, 144

validation link, 102

validity, 99, 102, 106, 108, 147
value, 36, 37, 192

hard-coded, 303
run-time, 273

Value Object, see design pattern, 72
value type, 207
var keyword, xxvi, xxvii
variable, 75, 88, 89, 119

count, 153, 154
global, xxv, 43
local, 153
name, 196

VBScript, 44
vendor, 78
version

language, 282
major, 219, 221
new, 282
old, 282
platform, 282
skip, 282

version control data, 305
version control system, 18, 19, 178, 305

centralised, 18, 19, 182
CVS, 18
distributed, 18, 186
secrets, 82
Subversion, 18
tactical advantage, 186

vertex, 314
vicious circle, 193
Vietnam, 6

view
high-level, 151
materialised, 299

vigilance, 320
vine, 210, 211
violence, 210
virtual machine, 21
Visitor, see design pattern
Visual Basic, 44

property, 301
Visual SourceSafe, 183
Visual Studio

add null check, 76, 81
auto-generated code, 21–23, 25, 72
build configuration, 25
code metrics, 105, 133
developer, 30
generate constructor, 72
generate Equals and GetHashCode, 72
Go To Definition, 315
IntelliSense, 157
project, 30, 54, 318
solution, 30, 54, 245
test runner, 58

void keyword, 162, 165
VT100, 135
vulnerability, 293, 294, 296, 299

W
wait time, 193

maximum, 194

walking, 239, 277, 279
Walking Skeleton, 20, 54, 60
warnings as errors, 25, 26, 29–32

as driver, 53, 57
cost, 67

weak code ownership, see code ownership
web site, 51
Weinberg, Gerald M., 289
what you see is all there is, 43, 45, 152, 175
while keyword, 133
Windows, 19, 22, 268, 277, 315
wizard, 20, 54
work

design, 6, 278
detective, 106
human, 13
intellectual, 5, 42, 279
physical, 279
project, 4
skilled, 8
uninterrupted, 276
unplanned, 192, 193

work from home, 284
work item, 275, 276, 283
work item management, 178
workaround, 207, 255
worker, 5
Working Effectively with Legacy Code (book), 113, 223
workshop, 292
worse is better, 36, 37
wrapper, 207, 242, 269, 302, 304
writer

single-thread, 249
WYSIATI, see what you see is all there is

X
X out names, 162–164, 260
x-ray, 307
X.509 certificate, see certificate
XML, 250, 326
XP, 276, 284
xp_cmdshell, 299
xUnit Test Patterns (book), 224
xUnit.net, 55, 90, 245, 301

Y
Yoder, Joseph, 153

Z
zero, 102, 106, 107
zero bugs, 240
zero tolerance, 25
zone, see also flow, 42, 277, 278
zoom, 148, 149, 151, 152, 154

context, 314, 317, 324, 325
example, 175, 265
navigation, 314, 317, 325
out, 265

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.

	Cover Page
	About This eBook
	Half Title
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Series Editor Foreword
	Preface
	About the Author
	I: Acceleration
	1. Art or Science?
	1.1 Building a House
	1.2 Growing a Garden
	1.3 Towards Engineering
	1.4 Conclusion

	2. Checklists
	2.1 An Aid to Memory
	2.2 Checklist for a New Code Base
	2.3 Adding Checks to Existing Code Bases
	2.4 Conclusion

	3. Tackling Complexity
	3.1 Purpose
	3.2 Why Programming Is Difficult
	3.3 Towards Software Engineering
	3.4 Conclusion

	4. Vertical Slice
	4.1 Start with Working Software
	4.2 Walking Skeleton
	4.3 Outside-in
	4.4 Complete the Slice
	4.5 Conclusion

	5. Encapsulation
	5.1 Save the Data
	5.2 Validation
	5.3 Protection of Invariants
	5.4 Conclusion

	6. Triangulation
	6.1 Short-Term versus Long-Term Memory
	6.2 Capacity
	6.3 Conclusion

	7. Decomposition
	7.1 Code Rot
	7.2 Code That Fits in Your Brain
	7.3 Conclusion

	8. API Design
	8.1 Principles of API Design
	8.2 API Design Example
	8.3 Conclusion

	9. Teamwork
	9.1 Git
	9.2 Collective Code Ownership
	9.3 Conclusion

	II: Sustainability 201
	10. Augmenting Code
	10.1 Feature Flags
	10.2 The Strangler Pattern
	10.3 Versioning
	10.4 Conclusion

	11. Editing Unit Tests
	11.1 Refactoring Unit Tests
	11.2 See Tests Fail
	11.3 Conclusion

	12. Troubleshooting
	12.1 Understanding
	12.2 Defects
	12.3 Bisection
	12.4 Conclusion

	13. Separation of Concerns
	13.1 Composition
	13.2 Cross-Cutting Concerns
	13.3 Conclusion

	14. Rhythm
	14.1 Personal Rhythm
	14.2 Team Rhythm
	14.3 Conclusion

	15. The Usual Suspects
	15.1 Performance
	15.2 Security
	15.3 Other Techniques
	15.4 Conclusion

	16. Tour
	16.1 Navigation
	16.2 Architecture
	16.3 Usage
	16.4 Conclusion

	A. List of Practices
	A.1 The 50/72 Rule
	A.2 The 80/24 Rule
	A.3 Arrange Act Assert
	A.4 Bisection
	A.5 Checklist for A New Code Base
	A.6 Command Query Separation331
	A.7 Count the Variables
	A.8 Cyclomatic Complexity
	A.9 Decorators for Cross-Cutting Concerns
	A.10 Devil’s Advocate
	A.11 Feature Flag
	A.12 Functional Core, Imperative Shell
	A.13 Hierarchy of Communication
	A.14 Justify Exceptions from the Rule
	A.15 Parse, Don’t Validate
	A.16 Postel’s Law
	A.17 Red Green Refactor
	A.18 Regularly Update Dependencies
	A.19 Reproduce Defects as Tests
	A.20 Review Code
	A.21 Semantic Versioning
	A.22 Separate Refactoring of Test and Production Code
	A.23 Slice
	A.24 Strangler
	A.25 Threat-Model
	A.26 Transformation Priority Premise
	A.27 X-driven Development
	A.28 X Out Names

	Bibliography
	Index
	Code Snippets

